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We develop the Cauchy theory of the spatially homogeneous inelastic Boltzmann equa-
tion for hard spheres, for a general form of collision rate which includes in particular
variable restitution coefficients depending on the kinetic energy and the relative veloc-
ity as well as the sticky particles model. We prove (local in time) non-concentration
estimates in Orlicz spaces, from which we deduce weak stability and existence theorem.
Strong stability together with uniqueness and instantaneous appearance of exponential
moments are proved under additional smoothness assumption on the initial datum,
for a restricted class of collision rates. Concerning the long-time behaviour, we give
conditions for the cooling process to occur or not in finite time.
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1. INTRODUCTION AND MAIN RESULTS

In this paper we address the Cauchy problem for the spatially homogeneous
Boltzmann equation modelling the dynamic of a homogeneous system of inelas-
tic hard spheres which interact only through binary collisions. More precisely,
describing the gas by the probability density f (t, v) ≥ 0 of particles with ve-
locity v ∈ R

N (N ≥ 2) at time t ≥ 0, we study the existence, uniqueness and
the qualitative behaviour of solutions to the Boltzmann equation for inelastic
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collision

∂ f

∂t
= Q( f, f ) in (0,+∞) × R

N , (1.1)

f (0, ·) = fin in R
N . (1.2)

The use of Boltzmann inelastic hard spheres-like models to describe dilute,
rapid flows of granular media started with the seminal physics paper,(22) and a huge
physics litterature has developed in the last twenty years. The study of granular
systems in such regime is motivated by their unexpected physical behavior (with
the phenomena of collapse—or “cooling effect”—at the kinetic level and clustering
at the hydrodynamical level), their use to derive hydrodynamical equations for
granular fluids, and their applications.

From the mathematical viewpoint, works on the Cauchy problem for Boltz-
mann models have been first restricted to the so-called inelastic Maxwell molecules
model, where, in a similar way to the Maxwell model in the elastic framework,
the collision rate is independent on the relative velocity. Existence, uniqueness of
solutions and description of the asymptotic cooling has been obtained in ref. 7
for the inelastic Maxwell molecules model with constant normal restitution coef-
ficients as well as with some cases of normal restitution coefficients depending on
the kinetic energy of the solution. More precise properties of the solutions, such
as their convergence to self-similarity, have also been investigated and we refer
to our companion paper(27) for more details and more references on this issue. At
least in the spatially homogeneous setting, the inelastic Maxwell molecules model
seems well understood now. The Maxwell molecules model is important because
of its analytic simplifications (with regards to the hard sphere model) allowing to
use powerful Fourier transform tools as introduced by Bobylev (see for instance
ref. 5) for the elastic Maxwell molecules Boltzmann equation. Another simplifi-
cation which has lead to interesting results is the restriction to one-dimensional
models (in space and velocity), where, on the contrary to the elastic case, the col-
lision operator has a non-trivial outcome. These models have been considered in
refs. 3, 4, 36 for some cases of normal restitution coefficients possibly depending
on the relative velocity.

It is possible to modify the collision operator of the inelastic Maxwell
molecules model by a multiplication by a function of the kinetic energy in or-
der to restore its dimensional homogeneity (see ref. 7) and thus the rate of cooling.
Physically the derivation of this model amounts to replace the collision rate by
a mean value independent on the relative velocity, starting from the inelastic
hard spheres model, and the resulting approximation is named pseudo-Maxwell
molecules in ref. 7. However, fine properties of the distribution (such as the behav-
ior of the overpopulated tails or the self-similar solutions) are broken or modified
by that approximation with respect to the inelastic hard spheres model. The recent
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papers(8,18) have studied the case of inelastic hard spheres with constant normal
restitution coefficients in any dimension and in various regimes: in particular in
a thermal bath, i.e., when a heat source term is added to the equation, and in the
self-similar variables of the free regime. Existence and smoothness of solutions
to the Cauchy problem and to the associated stationary problem are obtained in
ref. 18 for the thermal bath regime, while precise estimates on the tails of the
stationary solutions (assuming their existence) for various regimes (including the
two ones above-mentioned) are exhibited in ref. 8.

In the present work, we shall construct solutions to the freely cooling
Boltzmann equation for inelastic hard spheres in any dimension N ≥ 2 and for
a general framework of distributions of inelasticity (defined by a measure on the
set of all possible post-collisional velocities), which covers in particular variable
normal restitution coefficients possibly depending on the relative velocity and the
kinetic energy of the solution. It includes the cases of visco-elastic hard spheres
model (see ref. 9) as well as the case of sticky particles model. Our framework
enables to consider interesting physical features, such as elasticity increasing when
the relative velocity or the temperature decrease (“normal” granular media) or
the opposite phenomenon (“anomalous” granular media). We refer to refs. 7, 9,
17, 36 and the references therein for a physical motivation. Let us emphasize that
these solutions are new even in the case of a constant normal restitution coeffi-
cient as considered in refs. 8, 18. We also discuss the uniqueness of solutions, the
instantaneous appearance of exponential moments and various conditions on the
collisions rate for the collapse to occur or not in finite time. A second part of this
work(27) will be concerned with the existence of self-similar solutions and the tail
behavior of the distribution. In a third part,(28) we shall prove the uniqueness and
the asymptotic stability of these self-similar solutions for a small inelasticity.

From the viewpoint of mathematical tools, our main new contributions can
be summarized as follows:

(i) A generalization of the propagation of the L p-norm of the solution for the
elastic Boltzmann equation based on Young’s inequality as introduced in
ref. 12 (see also refs. 16, 30 where similar ideas are used for a different
model), into a result of propagation of Orlicz norms for inelastic (and
elastic) Boltzmann equations. This a priori estimate is used in order
to prove the existence of solutions to the inelastic Boltzmann equation
with energy dependent inelasticity. Let us emphasize that it also gives
an alternative proof of existence of solution for the elastic Boltzmann
equation with initial datum having only finite mass and kinetic energy
(but possibly infinite entropy).

(ii) A generalization of the DiBlasio uniqueness Theorem for the elastic hard
spheres Boltzmann equation (see refs. 10, 20, 31, 39) and for the in-
elastic hard spheres Boltzmann equation with constant normal restitution
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coefficients (see refs. 17, 18), to the inelastic hard spheres Boltzmann
equation with energy dependent normal restitution coefficients (see also
ref. 13 where similar tools are developed).

For points (i) and (ii), one of the main ideas of the proof is an
appropriate use of the change of variables v∗ → v′ (for fixed (v, σ ))
and v → v′ (for fixed (v∗, σ )) in the spirit of the proof of the so-called
“cancelation lemma” introduced in ref. 37 (see also ref. 1).

(iii) An improvement of the result of propagation of exponential moments
for the elastic Boltzmann equation(6) and for the inelastic Boltzmann
equation,(8) into a result of instantaneous appearance of exponential mo-
ments. This is obtained by combining estimates from ref. 8 together with
a simple o.d.e. argument introduced in the context of the Boltzmann equa-
tion in ref. 40.

Before we explain our results and methods in details, let us introduce the
problem.

1.1. A General Framework for the Collision Operator

We denote by B the rate of occurance of collisions of two particles with pre-
collisional velocities {v, v∗} which gives rise to post-collisional velocities {v′, v′

∗}.
The collision may be schematically written

{v} + {v∗} B−→ {v′} + {v′
∗} with

{
v′ + v′

∗ = v + v∗
|v′|2 + |v′

∗|2 ≤ |v|2 + |v∗|2.
(1.3)

More precisely, for any fixed pre-collisional velocities v, v∗ ∈ R
N , we intro-

duce a parametrization by z ∈ D := {w ∈ R
N ; |w| ≤ 1} of all possible resulting

post-collisional velocities {v′, v′
∗} in (1.3) in the following way:{

v′ = (v + v∗)/2 + z |v∗ − v|/2

v′
∗ = (v + v∗)/2 − z |v∗ − v|/2.

(1.4)

The collision rate B takes the form

B = |u| b, b = α(E) β(E, u; dz) (1.5)

where u = v − v∗ is the relative velocity, α is an intensity coefficient, β is the
normalized cross-section (it is a probability measure on D for any fixed E, u), and
E is the kinetic energy of the distribution f , defined by

E := E( f ) =
∫

RN

f |v|2 dv.
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The expression (1.5) reflects the fact that we are dealing with hard spheres
which undergo contact interactions. The term |u| α(E) corresponds to the rate
of collisions of two particles with pre-collisional velocities v, v∗ ∈ R

N , while
the term β corresponds to the conditional distributional probability to obtain the
two post-collisional velocities {v′, v′

∗}. The non-negative real |z| is the restitution
coefficient which measures the loss of energy in the collision, since

|v′|2 + |v′
∗|2 − |v|2 − |v∗|2 = −1

2
(1 − |z|2) |v∗ − v|2 ≤ 0. (1.6)

In the above formula, |z| = 1 corresponds to an elastic collision while z = 0
corresponds to a completely inelastic collision (or sticky collision).

The bilinear collision operator Q( f, f ) models the interaction of particles
by means of inelastic binary collisions (preserving mass and total momentum but
dissipating kinetic energy). More precisely, we define the collision operator by its
action on test functions (which is related to the evolution of the observables of the
probability density). Taking ϕ = ϕ(v) to be some well-suited regular function, we
introduce the following weak formulation of the collision operator (valid under
the symmetry assumption (1.11) below on β)

〈Q( f, f ), ϕ〉 := 1

2

∫
RN

∫
RN

f∗ f

∫
D

(ϕ′
∗ + ϕ′ − ϕ − ϕ∗) B(E, u; dz) dv dv∗.

(1.7)
Here and below we use the shorthand notations ψ := ψ(v), ψ∗ := ψ(v∗), ψ ′ :=
ψ(v′) and ψ ′

∗ := ψ(v′
∗) for any function ψ on R

N .
A first simple consequence of the definition of the operator (1.7) and of the

parametrization (1.4) is that mass and momentum are conserved

d

dt

∫
RN

f

(
1
v

)
dv = 0,

a fact that we easily derive (at least formally), multiplying the equation (1.1) by
ϕ = 1 or ϕ = v and integrating in the velocity variable (using (1.7)). In the same
way, multiplying equation (1.1) by ϕ = |v|2, integrating and using (1.6) and (1.7),
we obtain that the kinetic energy is dissipated

d

dt
E(t) = −D( f ) ≤ 0, (1.8)

where we define the energy dissipation functional D and the energy dissipation
rate �, which measures the (averaged) inelasticity of collisions, by

D( f ) :=
∫

RN

∫
RN

f f∗ |u|3 �(E, u) dv dv∗,

�(E, u) := 1

4

∫
D

(1 − |z|2) b(E, u; dz) ≥ 0.
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Finally, we introduce the cooling time, associated to the process of cooling
(possibly in finite time) of granular gases:

Tc := inf{T ≥ 0, E(t) = 0 ∀ t > T } = sup{S ≥ 0, E(t) > 0 ∀ t < S}. (1.9)

This cooling effect (or collapse) is one of the main motivations for the physical
and mathematical study of granular media.

The Boltzmann equation (1.1) is complemented with an initial condition (1.2)
where the initial datum is supposed to satisfy the moment conditions

0 ≤ fin ∈ L1
q (RN ),

∫
RN

fin dv = 1,

∫
RN

fin v dv = 0 (1.10)

for some q ≥ 2. Notice that we can assume without loss of generality the two last
moment conditions in (1.10), since we may always reduce to that case by a scalling
and translation argument. Here we denote, for any integer q ∈ N, the Banach space

L1
q =

{
f : R

N −→ R measurable; ‖ f ‖L1
q

:=
∫

RN

| f (v)| (1 + |v|q ) dv < ∞
}

.

We also define the weighted Sobolev spaces W k,1
q (q ∈ R and k ∈ N) by the norm

‖ f ‖W k,1
q

=
∑
|s|≤k

‖∂s f (1 + |v|q )‖L1 .

We introduce the space of normalized probability measures on R
N , denoted by

M1(RN ), and the space BVq (RN ) (q ∈ R) of (weighted) Bounded Variation func-
tions, defined as the set of the weak limits in D′(RN ) of sequences of smooth
functions which are bounded in W 1,1

q (RN ). Throughout the paper we denote by
“C” various constants which do not depend on the collision rate B.

1.2. Mathematical Assumptions on the Collision Rate

Let us state the basic assumptions on the collision rate B:

• The probability measure β satisfies the symmetry property

β(E, u; dz) = β(E,−u; −dz). (1.11)

• For any ϕ ∈ Cc(RN ) the functions

(v, v∗, E) →
∫

D
ϕ(v′) β(E, u; dz) and E → α(E) (1.12)

are continuous on R
N × R

N × (0,∞) and (0,∞) respectively.
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• The probability measure β satisfies the following angular spreading prop-
erty: for any E > 0, there is a function jE (ε) ≥ 0 such that

∀ ε > 0, u ∈ R
N

∫{
|û·z|∈[−1,1]\[−1+ε;1−ε]

} β(E, u; dz) ≤ jE (ε)

(1.13)
and jE (ε) → 0 as ε → 0 uniformly according to E when it is restricted to
a compact set of (0,+∞).

We will sometimes restrict our analysis to a kind of generalized (energy
dependent) visco-elastic model assuming that the cross-section b reduces to an
absolutely continuous measure according to the Hausdorff measure on the sphere

Cu,e = 1 − e

2
û + 1 + e

2
S

N−1. (1.14)

More precisely, we assume that

b(E, u; dz) = δ{z=(1−e)û/2+(1+e)σ/2} b̃(E, |u|, û · σ ) dσ (1.15)

where dσ is the uniform measure on the unit sphere, b̃ is a non-negative mea-
surable function and e : (0,∞) × R

N × [−1, 1] → [0, 1], e = e(E, |u|, û · σ ) is
a continuous function. For a vector x ∈ R

N \{0}, we define x̂ = x/|x | and S
N−1

stands for the unit sphere of R
N . Roughly speaking, the generalized energy de-

pendent visco-elastic model corresponds then to the case where for any direction
ẑ ∈ S

N−1, the post-collisional velocities (v′, v′
∗) such that (v′ − v′

∗)/|v′ − v′
∗| = ẑ

are uniquely (or deterministically) defined by the pre-collisional velocities (v, v∗).
For the uniqueness of the energy coupled models, we shall need the following

additional assumption:

H1. The cross-section b satisfies (1.15) with b̃ bounded, e = e(E) and the
following locally Lipschitz conditions holds: for any compact subset K ⊂
(0,∞) there exists a constant L K ∈ (0,∞) such that for any E, E ′ ∈ K

sup
u∈RN

‖b̃(E ′, u, .) − b̃(E, u, .)‖L1(SN−1) ≤ L K |E ′ − E | (1.16)

and

|e(E ′) − e(E)| ≤ L K |E ′ − E |. (1.17)

In the study of the cooling process, we always assume:

H2. The energy dissipation rate �(E, u) in (1.9) is continuous on (0,+∞) ×
R

N and satisfies

�(E, u) > 0 ∀ u ∈ R
N , E > 0. (1.18)
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We will also need one of the two following additional assumptions:

H3. For any E0, E∞ ∈ (0,∞) (with E0 ≥ E∞) there exists ψ such that

�(E, u) ≥ ψ(|u|) ∀ E ∈ (E∞, E0), ∀ u ∈ R
N , (1.19)

with ψ ∈ C(R+, R+) and such that for any R > 0 there exists ψR > 0 with

ψ(|u|) ≥ ψR |u|−1 ∀ u ∈ R
N , |u| > R/2. (1.20)

This assumption is quite natural. In particular, it holds for a “normal”
granular media.

H4. The cross-section b satisfies (1.15) with e = e(E, |u|) and there exists
b0, b1 ∈ (0,∞) such that b0 ≤ b̃ ≤ b1 a.e. and x → b̃(E, |u|, x) is nonde-
creasing and convex on (−1, 1) for any fixed E ∈ (0,∞) and u ∈ R

N .

Notice that under assumption (1.15) with b̃ = b̃(û · σ ) and e = e(E, u) the
energy dissipation rate just writes

�(E, u) = CN (1 − e2), (1.21)

where CN is a constant depending on the dimension.
Let us emphasize that the classical Boltzmann collision operator for inelastic

hard spheres with a constant normal restitution coefficient e ∈ [0, 1], as studied
in refs. 7 and 18, is included as a particular case of our model, and satisfies all
the assumptions above. But the formalism described from (1.3) to (1.13) is much
more general than this case. In particular, we may also consider:

1. Uniformly inelastic collision processes such that

∃ z0 ∈ [0, 1) s.t. supp B(E, u, .) ⊂ D(0, z0) ∀ u ∈ R
N , ∀ E > 0,

(1.22)
which includes the sticky particles model when z0 = 0.

2. The physically important case (1.14, 1.15) of collisions defined by a
normal restitution coefficient e and the cross-section b̃ which possibly
depend on E , |u| and û · σ . In particular it covers the kind of models
studied in ref. 7 (where e depends on E , and b̃ is independent on E
and |u|). It includes also the important case of the visco-elastic hard
spheres model where b̃ = b̃(û · σ ) and the normal restitution coefficient
depends (smoothly) on the normal component of the relative velocity, that
is |u||û − σ |/2 in our notation (see ref. 9).

3. This formalism also covers multidimensional versions of the kind of mod-
els proposed in ref. 36, which corresponds to the case where b is the
product of a measure depending on |u|, |z| and a measure of û · ẑ abso-
lutely continuous according to the Hausdorff measure. One easily checks
that our assumptions (1.5, 1.11, 1.12, 1.13) on the collision rate are quite
natural for this kind of models as well. Note that our measure framework
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for B can also models situations where, in the opposite to the generalized
visco-elastic case, there is some stochasticity or uncertainty on the degree
of inelasticity of the collisions, for instance due to some experimental
noise, or due to the fact that particles in the gas are a mixture of different
inelasticity behaviors, which are therefore handled statistically.

The fact that b is a finite measure on D allows to define the splitting Q =
Q+ − Q− where Q+ and Q− are defined in weak form by

〈Q+(g, f ), ϕ〉 :=
∫

RN

∫
RN

g∗ f

∫
D

ϕ′ |u| b(E, u; dz) dv dv∗ (1.23)

and

〈Q−(g, f ), ϕ〉 :=
∫

RN

∫
RN

g∗ f

∫
D

ϕ |u| b(E, u; dz) dv dv∗, (1.24)

where v′ is defined by (1.4). A straightforward computation shows that it is possible
to give a very simple strong form of Q− as follows

Q−(g, f ) = L(g) f, (1.25)

where L is the convolution operator

L(g)(v) := α(E)
∫

RN

g(v∗) |v − v∗| dv∗. (1.26)

Under assumption (1.15), the expression of Q+ reduces to

〈Q+(g, f ), ϕ〉 :=
∫

RN

∫
RN

g∗ f |u|
∫

SN−1

ϕ′ b̃(E, |u|, û · σ ) dσ dv dv∗, (1.27)

where v′ is defined by the formula (deduced from (1.4) and (1.14))

v′ = v − 1 + e

4
[u − |u|σ ], v′

∗ = v∗ + 1 + e

4
[u − |u|σ ]. (1.28)

1.3. Statement of the Main Results

Let us now define the notion of solutions we deal with in this paper.

Definition 1.1. Consider an initial datum fin satisfying (1.10) with q = 2. A
nonnegative function f on [0, T ] × R

N is said to be a solution to the Boltzmann
equation (1.1)–(1.2) if

f ∈ C([0, T ]; L1
2(RN )), (1.29)
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and if (1.1)–(1.2) holds in the sense of distributions, that is,∫ T

0

{∫
RN

f
∂φ

∂t
dv〈Q( f, f ), φ〉

}
dt =

∫
RN

fin φ(0, ·) dv (1.30)

for any φ ∈ C1
c ([0, T ) × R

N ).
It is worth mentioning that (1.29) ensures that the collision term Q( f, f ) is

well defined as a function of L1(RN ). Indeed, on the one hand, we deduce from
f ∈ C([0, T ]; L1

2(RN )) that E(t) ∈ K1 on [0, T ] and thus α(E(t)) ∈ K2 on [0, T ]
for some compact sets Ki ⊂ (0,∞). On the other hand, from the dual form (1.23)
it is immediate that Q± is bounded from L1

1 × L1
1 into L1, with bound α(E) (see

also refs. 18, 27 for some strong forms of the Q+( f, f ) term). It turns out that a
solution f , defined as above, is also a solution of (1.1)–(1.2) in the mild sense:

f (t, ·) = fin +
∫ t

0
Q( f (s, ·), f (s, ·)) ds a.e. in R

N .

Another straightforward consequence is that if f ∈ L∞([0, T ), L1
q ) then f satisfies

the following chain rule

d

dt

∫
RN

�( f ) φ dv = 〈Q( f, f ), �′( f ) φ 〉 in D′([0, T )), (1.31)

for any � ∈ C1(R) ∩ W 1,∞(R), φ ∈ L∞
1−q (RN ), in the sense of distribution on

[0, T ).
Let us state the main results of this paper. First, we give a Cauchy Theorem

valid when the collision rate B is independent on the kinetic energy.

Theorem 1.2. Assume that B satisfies the assumptions (1.5)–(1.11)–(1.12)–
(1.13) with b = b(u; dz): the cross-section does not depend on the kinetic energy.
Take an initial datum fin satisfying (1.10) with q = 3. Then

(i) For all T > 0, there exists a unique solution f ∈ C([0, T ]; L1
2) ∩

L∞(0, T ; L1
3) to the Boltzmann equation (1.1)–(1.2). This solution con-

serves mass and momentum,∫
RN

f (t, v) dv = 1,

∫
RN

f (t, v) v dv = 0 ∀ t ∈ [0, T ], (1.32)

and has a positive and decreasing kinetic energy

0 < E(t2) ≤ E(t1) ≤ Ein = E(0) ∀ ti ∈ [0, T ], t1 ≤ t2. (1.33)

In particular, the life time of the solution (as introduced in (1.9)) is Tc =
+∞.
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(ii) Moreover, assuming H2–H3 or H2–H4 (with e and b̃ independent on the
kinetic energy), there holds

E(t) → 0 and f (t, .) ⇀ δv=0 in M1(RN )-weak ∗ when t → Tc.

(1.34)
In other words, the cooling process does not occur in finite time, but
asymptotically in large time.

Remarks 1.3. Let us discuss the assumptions and conclusions of this theorem.

1. Under assumption H4 and when the collision rate is independent on the
kinetic energy, one can prove in fact that there exists a unique solution
f ∈ C([0,∞); L1) satisfying (1.32) and (1.33) for any initial condition
fin satisfying (1.10) with q = 2. The proof is quite more technical and we
refer to ref. 31 where the result is presented for the true elastic collision
Boltzmann equation; nevertheless the proof may be readily adapted to the
inelastic collisional framework.

2. The existence and uniqueness part of Theorem 0 (point (i)) extends to a
collision rate B = B(u; dz) ≥ 0 which satisfies the sole assumptions



B(−u; −dz) = B(u; dz),∫
D

B dz ≤ C0 (1 + |v| + |v∗|)

(v, v∗) →
∫

D
ϕ(v′) B(u; dz) ∈ C(RN × R

N ) ∀ϕ ∈ Cc(RN )

for some constant C0 ∈ R+. This corresponds to the so-called cut-off hard
potentials (or variable hard spheres) model in the context of inelastic
gases.

3. For a uniformly dissipative collision model, i.e., such that

�(u) ≥ �0 ∈ (0,∞),

a fact which holds under assumption (1.22) or under assumption H4 with
a normal restitution coefficient e satisfying e(|u|) ≤ e0 ∈ [0, 1) for any
u ∈ R

N , we may prove the additionnal a priori bound∫ +∞

0
‖ f (t, .)‖L1

3
dt ≤ C

(‖ fin‖L1
2
,�0

)
.

As a consequence, one can easily adapt the proof of existence and unique-
ness in Theorem 1.2 and then one can easily establish that the existence
part of Theorem 1.2 holds for any initial datum fin satisfying (1.10) with
q = 2.
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4. The existence and uniqueness part of Theorem 1.2 (point (i)) immedi-
ately extends to a time dependent collision rate B = |u| γ (t) b(t, u; dz)
where b(t, u; ·) is a probability measure for any u ∈ R

N , t ∈ [0, T ] such
that b(t, u; dz) = b(t,−u; −dz), and γ (t) is a non-negative function in
L∞(0, T ).

5. Finally let us emphasize that Theorem 1.2 applies to the important (non-
coupled) model of visco-elastic hard spheres. Indeed the collision rate of
this model satisfies assumptions (1.5,1.11,1.12,1.13) as well as H2 and
H3, with b̃ and e independent of E . We refer to the work in preparation(29)

which shall be devoted to the detailed study of this particular model.

Now, let us turn to the case where the collision rate depends on the kinetic
energy of the solution.

Theorem 1.4. Assume now that B satisfies the assumptions (1.5)–(1.11)–(1.12)–
(1.13) and that the cross-section b = b(E, u; dz) indeed depends on the kinetic
energy E . Take an initial datum fin satisfying (1.10) with q = 3.

(i) There exists at least one maximal solution f ∈ C([0, T ]; L1
2) ∩

L∞(0, T ; L1
3), ∀ T ∈ (0, Tc), for some Tc ∈ (0,+∞], which satisfies the

conservation laws (1.32) and the decay of the kinetic energy (1.33).
(ii) If the collision rate satisfies the additional assumption H1, and the initial

datum satisfies the additional assumption fin ∈ BV4 ∩ L1
5, then this solu-

tion is unique among the class of functions C([0, T ], L1
2) ∩ L∞(0, T ; L1

3),
for any T ∈ (0, Tc).

(iii) The asymptotic convergence (1.34) holds under the additional assump-
tions H2–H3 or H2–H4.

(iv) If one of following assumptions a. or b. is satsfied, then Tc = +∞:
a. α is bounded near E = 0 and jE converges to 0 as ε → 0 uniformly
near E = 0;
b. B satifies H4, � is bounded by an increasing function �0 which only
depends on the energy, and fin eaη |v|η ∈ L1 with η ∈ (1, 2], aη > 0.

(v) If �(E, u) ≥ �0 Eδ with �0 > 0 and δ < −1/2, then Tc < +∞.

Remark 1.5. Under the assumptions of point (ii) on the initial datum, by using a
bootstrap a posteriori argument as introduced in ref. 31, one can prove that there
exists a unique solution f ∈ C([0,∞); L1) satisfying (1.32) and (1.33) for any
initial condition fin satisfying (1.10) with q > 4 and fin ∈ BV4.
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1.4. Plan of the Paper

We gather in Sec. 2 some new integrability estimates on the collision operator
which can be of independent interest. We prove convolution-like estimates in Orlicz
spaces for the gain term. We give then estimates on the global operator in Orlicz
space, which show essentially that even if the bilinear collision operator is not
bounded, its evolution semi-group is bounded in any Orlicz space (with bound
depending on time). In Sec. 3 we start looking at solutions of the Boltzmann
equation. We prove Povzner lemma and several moments estimates in L1, from
which we deduce the existence and uniqueness part of Theorem 1.2. In Sec. 4, we
extend the existence result to collision rates depending on the kinetic energy of
the solution by proving a weak stability result on the basis of (local in time) non-
concentration estimates obtained by the study of Sec. 2, to obtain the existence
part of Theorem 1.4. The uniqueness part of Theorem 1.4 is obtained by proving
a strong stability result valid for smooth solution. In Sec. 5 we study the cooling
process and prove the remaining parts of Theorems 1.2 and 1.4.

2. ESTIMATES IN ORLICZ SPACES

In this section we gather some new functional estimates on the collision
operator in Orlicz spaces, that will be used in the sequel to obtain (local in
time) non-concentration estimates. Let us introduce the following decomposition
b = bt

ε + br
ε of the cross-section b for ε ∈ (0, 1):{

bt
ε(E, u; dz) = b(E, u; dz) 1{−1+ε≤û·z≤1−ε}

br
ε(E, u; dz) = b(E, u; dz) − bt

ε(E, u; dz)
(2.1)

where 1{−1+ε≤û·z≤1−ε} denotes the usual indicator function of the set {−1 + ε ≤
û · z ≤ 1 − ε}. When no confusion is possible the subscript ε shall be omitted.

In the sequel, � denotes a function C2 strictly increasing, convex satisfying
the assumptions (A.1), (A.2) and (A.3) (see the apppendix). This function defines
the Orlicz space L�(RN ), which is a Banach space (see the definition in the
appendix).

2.1. Convolution-Like Estimates on the Gain Term

In this subsection we shall prove convolution-like estimates in Orlicz spaces.
These estimates extend existing results in Lebesgue spaces: see refs. 12, 20, 21,
33 in the elastic case and ref. 18 in the inelastic case. The proof relies only upon
elementary tools, essentially Young’s inequality, in the spirit of ref. 12. Moreover
it has several advantages: its simplicity, the fact that it handles only the dual form
of Q+ and the fact that it is naturally well-suited to deal with Orlicz spaces, since
it is based on Young’s inequality.
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As shown by the formula for the differential of the Orlicz norm in the
appendix, the crucial quantity to estimate is∫

RN

Q+( f, f ) �′
(

f

‖ f ‖L�

)
dv.

Most of the difficulty is related to the fact that the bilinear operator Q+ is not
bounded because of the term |v − v∗| in the collision rate. Nevertheless it is
possible to prove a compactness-like estimate with respect to this algebraic weight.
When combined with the damping effect of the loss term this estimate shall show
that the evolution semi-group of the global collision operator is bounded in any
Orlicz space.

Let us state the result

Theorem 2.1. Assume that B satisfies (1.5)–(1.11)–(1.12)–(1.13). For any func-
tion f ∈ L1

1 ∩ L�, for any ε ∈ (0, 1), there is an explicit constant C+
E (ε) such

that∫
RN

Q+( f, f ) �′
(

f

‖ f ‖L�

)
dv ≤ α(E)

[
C+
E (ε) N�∗

(
�′

( | f |
‖ f ‖L�

))
‖ f ‖L1

1
‖ f ‖L�

+ (2 + 2N+2) jE (ε) ‖ f ‖L1
1

∫
RN

f �′
(

f

‖ f ‖L�

)
|v| dv

]
. (2.2)

Remark 2.2. Let us comment on the conclusions of this theorem.

1. We establish estimates for the quadratic Boltzmann collision operator but
similar bilinear estimates could be proved under additional assumption
on b, namely that either no frontal collision occurs, i.e., b(E, u; dz) should
vanish for û close to z, or no grazing collision occurs, i.e., b(E, ; dz) should
vanish for û close to −z. For more details on these bilinear estimates and
the corresponding assumptions, we refer to ref. 33 where they are proved
in Lebesgue spaces in the elastic framework.

2. Let us emphasize that for z ∼ 0 (close to sticky collisions), the jacobian
of the pre-postcollisional change of variable (v, v∗) → (v′, v′

∗) (both ve-
locities at the same time) is blowing up. However in our method, we only
use the changes of variable v → v′ and v∗ → v′, keeping the other ve-
locity unchanged, and the jacobians of these changes of variable remain
uniformly bounded as z → 0. This explains why our bounds includes the
sticky particules model, and are uniform as z → 0.

3. When �(t) = t p/p, estimate (2.3) just writes∫
RN

Q+( f, f ) f p−1 dv ≤ C̃+
E (ε) ‖ f ‖L1

1
‖ f ‖p

L p + j̃E (ε) ‖ f ‖L1
1
‖ f |v|1/p‖p

L p ,

(2.3)
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for any ε ∈ (0, 1) and for some explicit constants C̃+
E (ε), j̃E (ε) ∈ (0,∞)

with j̃E (ε) → 0 when ε → 0. Although the quantities involved in these pre-
viously mentioned papers are slightly different, one can see that estimate
(2.3) (or the L p version of Theorem 2.6) generalizes [12, Proposition 2.5]
to the inelastic Boltzmann operator and that it improves [18, Lemma 4.1]
because of the better control of the norm ‖ f |v|1/p‖L p .

Let us start with an elementary geometrical lemma that we shall need several
times in the sequel, in order to justify the change of variables v∗ → v′ (keeping
v, z fixed) and v → v′ (keeping v∗, z fixed). This lemma is close to the spirit of
the proof of these changes of variables in the proof of the so-called “cancellation
lemma” in refs. 1, 37.

Lemma 2.3. For any z ∈ D and γ ∈ (−1, 1) we define the map

�z : R
N → R

N , u → w = �z(u) := u + |u| z, (2.4)

its Jacobian function Jz := det (D �z) and the cone �γ := {u ∈ R
N \{0}, û · ẑ >

γ }. Then �z is a C∞-diffeomorphism from �γ onto �δ with

δ = γ + |z|
(1 + 2γ |z| + |z|2)1/2

and there exists Cγ ∈ (0,∞) such that

C−1
γ ≤ Jz ≤ Cγ on �γ (2.5)

uniformly with respect to the parameter z ∈ D.

Proof of Lemma 2.3. We may assume z �= 0 since otherwise the conclusion is clear.
Let start proving that �z is one-to-one on �−1 = R

N \(R−z). For any x ∈ R
N we

introduce the decomposition x = x1 ẑ + x2 := (x1, x2) such that x1 ∈ R, x2 ∈ R
N ,

x2 · ẑ = 0. The expression (2.4) then writes equivalently

w1 = u1 + (
u2

1 + |u2|2
)1/2 |z|, w2 = u2.

For any u, u′ ∈ �−1 the relation �z(u) = �z(u′) =: w implies immediately u2 =
u′

2 = w2 and we conclude observing that for any z ∈ D and w2 ∈ R
N the map

ϕw2,|z| : u1 → w1 := u1 + (
u2

1 + |w2|2
)1/2 |z|

is strictly increasing from R onto R if |z| < 1, from R onto R+ if |z| = 1 and
w2 �= 0, and from R+ onto R+ if |z| = 1 and w2 = 0. That proves that � is
one-to-one. Moreover, any point û = (u1, u2) ∈ S

N−1 such that û1 = γ is mapped
to the point w = (γ + |z|, u2) with square norm |w|2 = 1 + 2 γ |z| + |z|2. We
conclude that �(�γ ) = �δ thanks to the homogeneity property �z(r u) = r �z(u)
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for any r > 0 and u ∈ R
N . We next compute D�z(u) = I d + û ⊗ z and thus

Jz(u) = 1 + û · z from which (2.5) easily follows. Finally, the fact that �z is a
C∞-diffeomorphism is a direct consequence of the local inversion Theorem. �

Proof of Theorem 2.1. Let us denote

ϕ( f ) = �′
(

f

‖ f ‖L�

)
.

Using the decomposition b = bt + br , we control separately the two terms I t and
I r in the decomposition∫

RN

Q+( f, f ) ϕ( f ) dv =
∫

RN ×RN ×D
f f∗ϕ( f ′) |u| bt (E, u; dz) dv dv∗

+
∫

RN ×RN ×D
f f∗ϕ( f ′) |u| br (E, u; dz) dv dv∗ =: I t + I r .

Using the bound

|u| = |v − v∗| ≤ |v| + |v∗|
we have

I t ≤
∫

RN ×RN ×D
( f |v|) f∗ϕ( f ′) bt (E, u; dz) dv dv∗

+
∫

RN ×RN ×D
f ( f∗|v∗|)ϕ( f ′) |u| bt (E, u; dz) dv dv∗ =: I t

1 + I t
2.

For the term I t
1, by applying the Young’s inequality (A.4)

f∗ϕ( f ′) = ‖ f ‖L�

(
f∗

‖ f ‖L�

)
ϕ( f ′) ≤ ‖ f ‖L� �

(
f∗

‖ f ‖L�

)
+ ‖ f ‖L� �∗(ϕ( f ′)),

we get

I t
1 ≤ ‖ f ‖L�

∫
RN ×RN ×D

f |v|�
(

f∗
‖ f ‖L�

)
bt (E, u; dz) dv dv∗

+‖ f ‖L�

∫
RN ×RN ×D

f |v|�∗(ϕ( f ′)) bt (E, u; dz) dv dv∗ =: I t
1,1 + I t

1,2.

On the one hand, using

∀ x ∈ R+, �(x) ≤ x �′(x),

which is a trivial consequence of the fact that �(0) = 0 and �′ is increasing, we
have

I t
1,1 ≤ α(E) ‖ f ‖L1

1

∫
RN

f ϕ( f ) dv.
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Hölder’s inequality in Orlicz spaces (A.5) recalled in the appendix then yields

I t
1,1 ≤ α(E) N�∗

(
�′

( | f |
‖ f ‖L�

))
‖ f ‖L1

1
‖ f ‖L�. (2.6)

On the other hand, using that �∗(y) = y (�′)−1(y) − �((�′)−1(y)), we get

I t
1,2 ≤

∫
RN ×RN ×D

f |v| ϕ( f ′) f ′ bt (E, u; dz) dv dv∗.

We make the change of variables v∗ → v′ (while the other integration variables
are kept fixed) or more precisely � : (v, v∗, z) → (v,ψv,z(v∗), z) with ψv,z(v∗) =
v′ = v + 2−1 �z(v∗ − v). Thanks to the truncation (2.1) on bt

ε and Lemma 2.3, the
application � is a C∞-diffeomorphism from {(v, v∗, z) ∈ R

2N × D, û · z �= 1}
onto its image and its jacobian J� = 2−N (1 − û · z) satisfies |J−1

� | ≤ 2N ε−1 on
{(v, v∗, z) ∈ R

2N × D, û · z ≤ 1 − ε}. We then get

I t
1,2 ≤

∫
RN ×RN ×D

f |v| f ′ ϕ( f ′) J−1
� bt (E, v − ψ−1

v,z (v′); dz) dv dv′

≤ α(E) 2N ε−1 ‖ f ‖L1
1

∫
RN

f ϕ( f ) dv.

As previously, Hölder’s inequality (A.5) then yields

I t
1,2 ≤ α(E) 2N ε−1 ‖ f ‖L1

1
N�∗

(
�′

( | f |
‖ f ‖L�

))
‖ f ‖L�. (2.7)

Next, the term I t
2 is exactly similar to I t

1, except that one has to use the
change of variable v → v′ = v∗ + 2−1 �z(v − v∗) instead of v∗ → v′. Therefore,
gathering (2.6), (2.7) and the same estimate for I t

2, we obtain

I t ≤ 2 α(E) (1 + 2N ε−1) ‖ f ‖L1
1

[
N�∗

(
�′

( | f |
‖ f ‖L�

))]
‖ f ‖L�. (2.8)

Finally, for the term I r , we can split it as

I r ≤
∫

RN ×RN ×D
f f∗ ϕ( f ′) 1{û·z≤0} |u| br (E, u; dz) dv dv∗

+
∫

RN ×RN ×D
f f∗ ϕ( f ′) 1{û·z≥0} |u| br (E, u; dz) dv dv∗ =: I r

1 + I r
2 .

For I r
1 , we use Young’s inequality (A.4) on x = f∗ and y = ϕ( f ′) to obtain

I r
1 ≤

∫
RN ×RN ×D

f f∗ ϕ( f∗) 1{û·z≤0} |u| br (E, u; dz) dv dv∗

+
∫

RN ×RN ×D
f f ′ ϕ( f ′) 1{û·z≤0} |u| br (E, u; dz) dv dv∗.
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In the second integral we make again the change of variable defined by � for which
there holds |J−1

� | ≤ 2N on the domain of integration because of the truncation
û · z ≤ 0. We also observe thanks to a direct computation starting from (1.3) that
under the truncation û · z ≤ 0 there holds

|v − v∗| ≤ 2|v′ − v| ≤ 2(1 + |v′|)(1 + |v|).
Hence we obtain

I r
1 ≤ (1 + 2N+1)

(
sup

u∈RN

∫
D

br (E, u; dz)

)
‖ f ‖L1

1

∫
RN

f ϕ( f ) (1 + |v|) dv

≤ (1 + 2N+1) α(E) jE (ε) ‖ f ‖L1
1

∫
RN

f ϕ( f ) (1 + |v|) dv.

The term I r
2 is treated similarly using Young’s inequality (this time on x = f

and y = ϕ( f ′)) and the change of variable v → v′ instead of v∗ → v′. It satisfies
therefore the same estimate. Thus we obtain the estimate

I r ≤ (2 + 2N+2) α(E) jE (ε) ‖ f ‖L1
1

∫
RN

f ϕ( f ) (1 + |v|) dv. (2.9)

Defining

C+
E (ε) = 2(1 + 2N ε−1) + (2 + 2N+2) jE (ε), (2.10)

we conclude the proof gathering (2.8) and (2.9). �

2.2. Minoration of the Loss Term

In this subsection we recall a well-known result about the minoration of the
loss term Q−. Let us recall first the following classical estimate.

Lemma 2.4. For any non-negative measurable function f such that

f ∈ L1
1(RN ),

∫
RN

f dv = 1,

∫
RN

f v dv = 0, (2.11)

we have

∀ v ∈ R
N ,

∫
RN

f∗ |v − v∗| dv∗ ≥ |v|.

Proof of Lemma 2.4. Use Jensen’s inequality∫
RN

ϕ(g∗) dµ∗ ≥ ϕ

(∫
RN

g∗ dµ∗

)
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with the probability measure dµ∗ = f∗ dv∗, the measurable function v∗ → g∗ =
v − v∗ and the convex function ϕ(s) = |s|. �

Then the proof of the following proposition is straightforward:

Proposition 2.5. Assume that B satisfies (1.5). For a non-negative function f
satisfying (2.11), we have∫

RN

Q−( f, f ) �′
(

f

‖ f ‖L�

)
dv ≥ α(E)

∫
RN

f �′
(

f

‖ f ‖L�

)
|v| dv. (2.12)

2.3. Estimate on the Global Collision Operator and a priori Estimate

on the Solutions

Combining Theorem 2.1 and Proposition 2.5 we get

Theorem 2.6. Assume that B satisfies (1.5)–(1.11)–(1.12)–(1.13). Let us con-
sider a non-negative function f satisfying (2.11). Then there is an explicit constant
CE depending on the collision rate through the functions α and jE such that∫

RN

Q( f, f ) �′
(

f

‖ f ‖L�

)
dv ≤ CE

[
N�∗

(
�′

( | f |
‖ f ‖L�

))]
‖ f ‖L1

1
‖ f ‖L�.

More precisely, CE = α(E) C+
E (ε0), with ε0 such that jE (ε0) ≤ (2 + 2N+2)−1

‖ f ‖−1
L1

1
and where C+

E is defined in (2.10).

Proof of Theorem 2.6. One just has to combine (2.2) and (2.12) and pick a ε0 small
enough such that

(2 + 2N+2) ‖ f ‖L1
1

jE (ε0) ≤ 1.

�

Corollary 2.7. Assume that B satisfies (1.5)–(1.11)–(1.12)–(1.13) and let us
consider a solution f ∈ C([0, T ]; L1

2) to the Boltzmann equation (1.1)–(1.2) as-
sociated to an initial datum fin ∈ L1

2 and to the collision rate B. Assume moreover
that (1.32) holds and there exists a compact set K ⊂ (0,+∞) such that

∀ t ∈ [0, T ], E(t) ∈ K .

Then, there exists a C2, strictly increasing and convex function � satisfying the
assumptions (A.1), (A.2) and (A.3) (which only depends on fin) and a constant CT

(which depends on K , T and B) such that

sup
[0,T ]

‖ f (t, .)‖L� ≤ CT .
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Remark 2.8. Let us emphasize that these non-concentration bounds are valid
for the sticky particules model (in this case they provide an exponentially growing
bound in L� for all times). As a particular case we deduce some explicit bounds
on the entropy when it is finite initially. Moreover, since our bounds are uniform as
b ⇀ δz=0, we also deduce a proof of the sticky particules limit (for a cross-section
being a diffuse measure converging to a Dirac mass at z = 0) by the Dunford-Pettis
Lemma. This shows moreover that this limit is not singular.

Proof of Corollary 2.7. Since fin ∈ L1(RN ), as recalled in the appendix, a refined
version of the De la Vallée-Poussin Theorem [25, Proposition I.1.1] (see also refs.
23, 24) guarantees that there exists a function � satisfying the properties listed in
the statement of Corollary 2.7 and such that∫

RN

�(| fin|) dv < +∞.

Then the L� norm of f satisfies

d

dt
‖ ft‖L� =

[
N�∗

(
�′

( | f |
‖ f ‖L�

))]−1 ∫
RN

Q( f, f ) �′
( | f |

‖ f ‖L�

)
dv

thanks to Theorem A.2, and thus using Theorem 2.6, we get

∀ t ∈ [0, T ],
d

dt
‖ ft‖L� ≤ CE(t) ‖ ft‖L1

1
‖ ft‖L�.

Thanks to the assumptions on B, the constant CE(t) provided by Theorem 2.6 is
uniform when the kinetic energy belongs to a compact set. Thus we deduce

∀ t ∈ [0, T ],
d

dt
‖ ft‖L� ≤ CK ‖ ft‖L1

1
‖ ft‖L�. (2.13)

for some explicit constant CK > 0 depending on K and the collision rate. We
conclude thanks to a Gronwall argument. �

3. PROOF OF THE CAUCHY THEOREM FOR

NON-COUPLED COLLISION RATE

In this section we fix T∗ > 0 and we assume that the collision rate B satisfies

B = B(t, u; dz) = |u| γ (t) b(t, u; dz), (3.1)

where b is a probability measure on D for any t ∈ [0, T∗] and u ∈ R
N satisfying

∀ t ∈ [0, T∗], ∀ u ∈ R
N , b(t, u; dz) = b(t,−u; −dz) (3.2)

and where γ satisfies

0 ≤ γ (t) ≤ γ∗ on (0, T∗). (3.3)
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3.1. Propagation of Moments

In this subsection we establish several moments estimates which are well
known for the Boltzmann equation with elastic collision, see refs. 6, 26, 31 and
the references therein, as well as the recent works(8,18) for the inelastic case. Let
us emphasize that these moment estimates are uniform with respect to the normal
restitution coefficient e or more generally to the support of b(t, u; ·) in D.

First we give a result of propagation of moments valid for general collision
rates using a rough version of the Povzner inequality.

Proposition 3.1. Assume that B satisfies (3.1)–(3.3). For any 0 ≤ fin ∈ L1
q (RN )

with q > 2 and T > 0, there exists CT such that any solution f to the inelastic
Boltzmann equation (1.1)–(1.2) on [0, T ] satisfies, at least formally,

sup
[0,T ]

‖ f (t, ·)‖L1
q
≤ CT .

Proof of Proposition 3.1. We write the proof for the third moment, the general
moment estimate being similar. For any function � : R

N → R+ such that �(v) :=
ψ(|v|2) for some function ψ : R+ → R+, the evolution of the associated moment
is given by

d

dt

∫
RN

f � dv =
∫

RN ×RN

f f∗ K� dv dv∗,

where

K� := 1

2

∫
D

(� ′ + � ′
∗ − � − �∗) B(t, u; dz).

For ψ(z) = zs , s > 1, the function ψ is super-additive, that is ψ(x) + ψ(y) ≤
ψ(x + y), and it is an increasing function. As a consequence,

� ′ + � ′
∗ − � − �∗ ≤ ψ(|v′|2) + ψ(|v′

∗|2) − ψ(|v′|2 + |v′
∗|2)

+ψ(|v|2 + |v∗|2) − ψ(|v|2) − ψ(|v∗|2)

≤ ψ(|v|2 + |v∗|2) − ψ(|v|2) − ψ(|v∗|2),

which implies

K� ≤ γ (t)

2
|v − v∗| [ψ(|v|2 + |v∗|2) − ψ(|v|2) − ψ(|v∗|2)].

Making the choice ψ(x) = x3/2 and using the inequality

(x1/2 + y1/2) [(x + y)3/2 − x3/2 − y3/2] ≤ C (x1/2 + y1/2) (x1/2 y + xy1/2)

≤ C (2xy + x1/2 y3/2 + x3/2 y1/2) (3.4)
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for any x, y > 0, we get

d

dt

∫
RN

f |v|3 dv ≤ C γ (t)
∫

RN ×RN

f f∗ (|v|2 |v∗|2 + |v| |v∗|3) dv dv∗, (3.5)

and we conclude thanks to a Gronwall argument. �

Finally we give a much more precise result on the evolution of moments
in the case when assumption H4 is made. On the one hand, we state uniform
in time propagation of algebraic moments (as introduced in refs. 2, 15, 34) and
exponential moments (for which the first results were obtained in ref. 6). On the
other hand, we prove appearance of some exponential moments (while appearance
of algebraic moments was initiated in refs. 11, 39, 40) using carefully estimates
developed in ref. 8. These estimates may be seen as a priori bounds, but in fact,
by the bootstrap argument introduced in ref. 31, they can be obtained a posteriori
for any solution given by the existence part of Theorems 1.2 and 1.4.

Proposition 3.2. We make the assumption H4 on B. A solution f to the in-
elastic Boltzman equation (1.1)–(1.2) on [0, Tc) satisfies the additional moment
properties:

(i) For any s > 2, there exists Cs > 0 such that

sup
t∈[0,Tc)

‖ f (t, .)‖L1
s
≤ max

{‖ fin‖L1
s
, Cs

}
. (3.6)

(ii) If fin er |v|η ∈ L1(RN ) for r > 0 and η ∈ (0, 2], there exists C1, r ′ > 0,
such that

sup
t∈[0,Tc)

∫
RN

f (t, v) er ′ |v|η dv ≤ C1. (3.7)

(iii) For any η ∈ (0, 1/2) and τ ∈ (0, Tc) there exists aη, Cη ∈ (0,∞) such that

sup
t∈[τ,Tc)

∫
RN

f (t, v) eaη |v|η dv ≤ Cη. (3.8)

Let us emphasize that none of these constants depends on the inelasticity coefficient
e (so that the estimates are uniform with respect to the inelasticity of the Boltzmann
operator) and that the constant Cs, aη, Cη may depend on fin only through its
kinetic energy Ein.

Remark 3.3. The proof of (i) is very classical for the elastic Boltzmann
equation(2,15,34) and it has been extended to the inelastic operator in ref. 18.
Estimate (ii) has been proved in ref. 6 for the elastic Boltzmann equation and it
has been generalized in ref. 8 to the (stationary) inelastic Boltzmann equation. We
refer to refs. 6, 26, 31, 38 for development around the Povzner inequalities. Since
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(ii) is a straightforward consequence of the Povzner inequality proved in ref. 8, we
just have to prove (iii). Nevertheless, since the proof of (iii) requires some tools
and notations introduced in refs. 8, 18 we begin (step 1 and step 2) by briefly pre-
senting the proof of (ii). Let us emphasize again that (iii) is new even for the elastic
equation. In the elastic framework, an extension of (iii) to hard potentials with
cutoff has been used recently in the proof of the exponential return to equilibrium
with explicit rate for initial data with finite mass and energy, see ref. 32.

Proof of Proposition 3.2. Let us define

m p :=
∫

RN

f |v|2p dv.

Step 1. Differential inequalities on the moments. Taking ψ(x) = x p/2 and B of the

above form, there holds

d

dt
m p =

∫
RN

Q( f, f ) |v|2p dv = α(E)
∫

RN ×RN

f f∗ |v − v∗| K p(v, v∗) dv dv∗,

(3.9)
where

K p(v, v∗) := 1

2

∫
SN−1

(|v′|2p + |v′
∗|2p − |v|2p − |v∗|2p)

b̃(E, |u|, σ · û)

α(E)
dσ.

(3.10)
From [8, Lemma 1, Corollary 3], there holds

K p(v, v∗) ≤ γp (|v|2 + |v∗|2)p − |v|2p − |v∗|2p (3.11)

where (γp)p=3/2,2,... is a decreasing sequence of real numbers such that

0 < γp < min

{
1,

4

p + 1

}
(3.12)

(notice that the assumptions (8, (2.11)–(2.12)–(2.13)) are satisfied under our as-
sumptions on the collision rate). Let us emphasize that the estimate (3.11) does
not depend on the inelasticity coefficient e(E, |u|). Then, from [8, Lemmas 2 and
3], we have

1

α(E)

∫
RN

Q( f, f ) |v|2p dv ≤ γp Sp − (1 − γp) m p+1/2 (3.13)

with

Sp :=
kp∑

k=1

(
p
k

)
(mk+1/2 m p−k + mk m p−k+1/2),
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where kp := [(p + 1)/2] is the integer part of (p + 1)/2 and ( p
k ) stands for the

binomial coefficient. Gathering (3.9) and (3.13), we get

d

dt
m p ≤ α(E) (γp Sp − (1 − γp) m p+1/2) ∀ p = 3/2, 2, . . . (3.14)

By Hölder’s inequality and the conservation of mass,

m
1+ 1

2p
p ≤ m p+1/2

and, by [8, Lemma 4], for any a ≥ 1, there exists A > 0 such that

Sp ≤ A �(a p + a/2 + 1) Z p

with

Z p := max
k=1,..,kp

{zk+1/2 z p−k, zk z p−k+1/2}, z p := m p

�(a p + 1/2)
.

We may then rewrite (3.14) as

dz p

dt
≤ α(E)

(
A γp

�(ap + a/2 + 1)

�(ap + 1/2)
Z p − (1 − γp) �(ap + 1/2)1/2p z1+1/2p

p

)
(3.15)

for any p = 3/2, 2, . . . On the one hand, from (3.12), there exists A′ such that

A γp
�(ap + a/2 + 1)

�(ap + 1/2)
≤ A′ pa/2−1/2 ∀ p = 3/2, 2, . . . (3.16)

On the other hand, thanks to Stirling’s formula n! ∼ nn e−n
√

2πn when n → ∞
and the estimate (3.12), there exists A′′ > 0 such that

(1 − γp) �(a p + 1/2)1/2p ≥ A′′ pa/2 ∀ p = 3/2, 2, . . . (3.17)

Gathering (3.15), (3.16) and (3.17), we obtain the differential inequality

dz p

dt
≤ α(E)

(
A′ pa/2−1/2 Z p − A′′ pa/2 z1+1/2p

p

)
(3.18)

for any p = 3/2, 2, . . .

Step 2. Proof of (3.7). On the one hand, we remark, by an induction argument,
that taking p0 := max{3/2, (2A′/A′′)2}, the sequence of functions z p := x p is a
sequence of supersolutions of (3.18) for any x > 0 and for p ≥ p0. On the other
hand, choosing x0 large enough, which may depend on p0, with have from (i) that
the sequence of functions z p := x p is a sequence of supersolutions of (3.18) for any
x ≥ x0 and for p ∈ {3/2, . . . , p0}. As a consequence, since z p for p = 0, 1/2, 1
are bounded by ‖ fin‖L1

2
, we have proved that there exists x0 such that the set

Cx :=
{

z = (z p); z p ≤ x p ∀ p ∈ 1

2
N

}
(3.19)
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is invariant under the flow generated by the Boltzmann equation for any x ≥ x0:
if f (t1) ∈ Cx then f (t2) ∈ Cx for any t2 ≥ t1. We set a := 2/η ≥ 1. Noticing that∫

RN

f (v) er |v|η dv =
∞∑

k=0

rk

k!
mk η/2 (3.20)

we get, from the assumption made on fin, that

mk/a(0) ≤ C0
k!

rk
∀ k ∈ N.

Since we may assume r ∈ (0, 1], the function y → C0 �(y + 1)r−y is increasing,
and we deduce by Hölder’s inequality that for any p

m p(0) ≤ C0
�p!

r �p
≤ C0

�(ap + 2)

rap+2
with �p := [ap] + 1.

From the definition of z p we deduce

z p(0) ≤ C0
ap (ap + 1)

rap+2
≤ x p

1 (3.21)

for any p and for some constant x1 ∈ (0,∞). Choosing x := max{x0, x1} we get
from (3.19) and (3.21) that z p(t) ≤ x p ∀ t ∈ [0, Tc) for any p. Therefore, we have

m p(t) ≤ �(ap + 1/2) x p ∀ p = 3/2, 2, . . . , ∀ t ∈ [0, Tc).

The function y → �(y + 1/2) x y being increasing, we deduce from Hölder’s
inequality that for any k ∈ N

∗ that mk/a(t) ≤ �(ap + 1/2) x p ≤ �(k + a/2 +
1/2) xk/a+1/2 with p := [2k/a]/2 + 1/2. For r ′ < 2x−1/a(1 + a)−1 we conclude

∀ t ∈ [0, Tc)
∫

RN

f (t, v) er ′ |v|η dv ≤
∞∑

k=0

�(k + a/2 + 1/2)

k!
xk/a+1/2 (r ′)k

≤ C
∞∑

k=0

((
a + 1

2

)
x1/ar ′

)k

< +∞

from which (3.7) follows.

Step 3. Proof of (3.8). Let us fix τ ∈ (0, Tc). We claim that there exists x large
enough and some increasing sequence of times (tp)p≥p0 which are bounded by τ

such that for any p

∀ t ∈ [tp, Tc) z p(t) ≤ x p. (3.22)

We already know by classical arguments (see refs. 31, 38) that for p0 (defined at
the beginning of Step 2) there exists x1, larger than x0 defined in (3.19), such that
(3.22) holds for any p ≤ p0 and tp = τ/2. We then argue by induction, assuming
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that for p ≥ p0 there holds:

zk ≤ xk on [tp−1/2, Tc) ∀ k ≤ p − 1/2 (3.23)

z p ≥ x p on [tp−1/2, tp), (3.24)

for some x ≥ x1 to be defined. If (3.24) does not hold, there is nothing to prove
thanks to Step 2. Gathering (3.23), (3.24) with (3.18) we get from the definition
of p0 and the fact that E(t) ∈ [E(τ ), E(0)] so that α(E) ≥ α0 > 0

dz p

dt
≤ −α0

A′′

2
pa/2 z1+1/2p

p on (tp−1/2, tp). (3.25)

Integrating this differential inequality we obtain

−z
− 1

2p
p (tp) ≤ z

− 1
2p

p (tp−1/2) − z
− 1

2p
p (tp) ≤ − 1

2p

A′′ α0

2
pa/2 (tp − tp−1/2).

Defining (tp) in the following way:

t0 := τ

2
, tp := tp−1/2 + τ

2

p1−a/2

sa
, sa :=

∞∑
p=0

p1−a/2

and defining x2 := (8 sa)2/(A′′ α0 τ )2 we have then proved z p(tp) ≤ x p
2 and there-

fore z p(t) ≤ x p for any t ≥ (tp, Tc) with x = max{x1, x2} thanks to Step 2. Setting
a := 2/η > 4 (η < 1/2) we have

∞∑
k=0

t1+k/2 ≤ τ (3.26)

and we conclude as in the end of Step 2. �

3.2. Stability Estimate in L1
2 and Proof of the Uniqueness

Part of Theorem 1.2

Proposition 3.4. Assume that B satisfies (3.1)–(3.3). For any two solutions f
and g of the inelastic Boltzmann equation (1.1)–(1.2) on [0, T ] (T ≤ T∗) we have

d

dt

∫
RN

| f − g| (1 + |v|2) dv ≤ C γ∗
∫

RN

( f + g) (1 + |v|3) dv

×
∫

RN

| f − g| (1 + |v|2) dv. (3.27)

We deduce that there is CT > 0 depending on B and supt∈[0,T ] ‖ f + g‖L1
3

such
that

∀ t ∈ [0, T ], ‖ ft − gt‖L1
2
≤ ‖ fin − gin‖L1

2
eCT t .
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In particular, there exists at most one solution to the Cauchy problem for the
inelastic Boltzmann equation in C([0, T ]; L1

2) ∩ L1(0, T ; L1
3).

Proof of Proposition 3.4. We multiply the equation satisfied by ( f − g)
by φ(t, y) = sgn( f (t, y) − g(t, y)) k , where k = (1 + |v|2). Using the chain
rule (1.31), we get for all t ≥ 0

d

dt

∫
RN

| f − g| k dv = 1

2

∫
RN ×RN ×D

[( f − g)g∗ + f ( f∗ − g∗)]

×(φ′ + φ′
∗ − φ − φ∗) B(t, u; dz) dv∗ dv

= 1

2

∫
RN ×RN ×D

( f − g) ( f∗ + g∗)

×(φ′ + φ′
∗ − φ − φ∗) B(t, u; dz) dv∗ dv

≤ 1

2

∫
RN ×RN ×D

| f − g| ( f∗ + g∗)

×(k ′ + k ′
∗ − k + k∗) B(t, u; dz) dv∗ dv,

where we have just use the symmetry hypothesis (3.1), (3.2) on B and a change
of variable (v, v∗) → (v∗, v). Then, thanks to the bounds (3.1), (3.3) we deduce

d

dt

∫
RN

| f − g| k dv ≤ γ∗
∫

RN ×RN

|u| | f − g| ( f∗ + g∗) k∗ dv∗dv

≤ γ∗
∫

RN

| f − g| k dv

∫
RN

( f∗ + g∗) k3/2
∗ dv∗

which yields the differential inequality (3.27). The end of the proof is straightfor-
ward by a Gronwall argument. �

The uniqueness in C([0, T ); L1
2) ∩ L1(0, T ; L1

3) as stated in Theorem 1.2 is
given by Proposition 3.4.

3.3. Sketch of the Proof of the Existence Part of Theorem 1.2

As for the existence part, we briefly sketch the proof. We follow a method
introduced in ref. 31 and developed in ref. 17. We split the proof into three steps.

Step 1. Let us first consider an initial datum fin satisfying (1.10) with q = 4 and
let us define the truncated collision rates Bn = B 1|u|≤n . The associated collision
operators Qn are bounded in any L1

q , q ≥ 1, and are Lipschitz in L1
2 on any

bounded subset of L1
2. Therefore following a classical argument from Arkeryd,

see ref. 2, we can use the Banach fixed point Theorem and obtain the existence of a



682 Mischler et al.

solution 0 ≤ fn ∈ C([0, T ]; L1
2) ∩ L∞(0, T ; L1

4) for any T > 0, to the associated
Boltzmann equation (1.1)–(1.2), which satisfies (1.32)–(1.33).

Step 2. From Proposition 3.1, for any T > 0, there exists CT such that

sup
[0,T ]

‖ fn‖L1
4
≤ CT .

Moreover, coming back to the proof of Proposition 3.4 (see also the first step in
the proof of ref. 17, Theorem 2.6), we may establish the differential inequality

d

dt
‖ fn − fm‖L1

2
≤ C1 ‖ fn + fm‖L1

3
‖ fn − fm‖L1

2
+ C2

n
‖ fn + fm‖2

L1
4

for any integers m ≥ n. Gathering these two informations we easily deduce
that ( fn) is a Cauchy sequence in C([0, T ]; L1

2) for any T > 0. Denoting by
f ∈ C([0, T ]; L1

2) ∩ L∞(0, T ; L1
4) its limit, we obtain that f is a solution to the

Boltzmann equation (1.1)–(1.2) associated to the collision rate B and the initial
datum fin by passing to the limit in the weak formulation (1.30) of the Boltzmann
equation written for fn .

Step 3. When the initial datum fin satisfies (1.10) with q = 3 we introduce the
sequence of initial data fin,� := fin 1{|v|≤�}. Since fin,� ∈ L1

4, the preceding step
give the existence of a sequence of solutions f� ∈ C([0, T ]; L1

2) ∩ L∞(0, T ; L1
3)

for any T > 0 to the Boltzmann equation (1.1)–(1.2) associated to the initial datum
fin,�. From Proposition 0, for any T > 0, there exists CT such that

sup
[0,T ]

‖ f�‖L1
3
≤ CT .

Thanks to (3.27) we establish that ( f�) is a Cauchy sequence in C([0, T ]; L1
2) and

we conclude as before. �

Remark 3.5. Note here that an alternative path to the proof of existence could
have been the use of the result of propagation of Orlicz norm which shows that the
solution is uniformly bounded for t ∈ [0, T ] in a certain Orlicz space. Together
with the propagation of moments and Dunford-Pettis Lemma, it would yield the
existence of a solution by classical approximation arguments and weak stability
results as presented below. More generally the propagation of Orlicz norm by
the collision operator can be seen as a new tool (as well as a clarification) for
the theory of solutions to the spatially homogeneous Boltzmann equation with
no entropy bound, as in the inelastic case, or in the elastic case when the initial
datum has infinite entropy, see also refs. 2, 31 where other strategies of proof are
presented.
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4. PROOF OF THE CAUCHY THEOREM FOR COUPLED

COLLISION RATE

4.1. Weak Stability and Proof of the Existence Part of Theorem 1.4

Proposition 4.1. Consider a sequence Bn = Bn(t, u; dz) of collision rates sat-
isfying the structure conditions (3.1)–(3.2) and the uniform bound

0 ≤ γn(t) ≤ γT ∀ t ∈ [0, T ], ∀ n ∈ N
∗,

and let us denote by fn ∈ C([0, T ); L1
2) ∩ L∞(0, T ; L1

3) the solution associated to
Bn thanks to the existence result of the preceding section (existence and uniqueness
part of Theorem 1.2 and Remark 1.3 4th point). Assume furthermore that ( fn)
belongs to a weak compact set of L1((0, T ) × R

N ) and that there exists a collision
rate B satisfying (3.1)–(3.2)–(3.3) and such that for any ψ ∈ Cc(RN )

γn → γ and

∫
D

ψ(v′) bn(t, u; dz) →
∫

D
ψ(v′) b(t, u; dz) a.e.

Then there exists a function f ∈ C([0, T ); L1
2) ∩ L∞(0, T ; L1

3) and a subsequence
fnk such that

fnk ⇀ f weakly in L1((0, T ) × R
N ),

and f is a solution to the Boltzmann equation (1.1)–(1.2) associated to B.

Such a stability/compactness result is very classical and we refer to refs. 2,
14 for its proof.

Proof of the existence part of Theorem 1.4. We assume without restriction that
there exists a decreasing function α0 such that α ≤ α0 on [0, Ein]. We proceed in
three steps.

Step 1. We start with some a priori bounds. We set Y3 := ‖ f ‖L1
3
. From the Povzner

inequality (3.5) (with γ (t) = α(E(t))) and the dissipation of energy equation (1.8),
we have

d

dt
Y3 ≤ C1 α0(E) Y3, Y3(0)Y3( fin) (4.1)

and

d

dt
E ≥ −C1 α0(E) Y3, E(0) = Ein, (4.2)

for some constant C1 (which depends on Ein). There exists T∗ such that any
solution (Y3, E) to the above differential inequalities system is defined on [0, T∗]
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and satisfies

sup
[0,T∗]

Y3(t) ≤ 2 Y3( fin), inf
[0,T∗]

E(t) ≥ Ein/2. (4.3)

More precisely, we choose T∗ such that

C1 α0(Ein/2) T∗ ≤ Y3( fin) and C1 α0(Ein/2)2 Y3( fin) T∗ ≤ Ein/2,

in such a way that if (Y3, E) satisfies Y3 ≤ 2 Y3( fin) and (4.2) on (0, T∗) or if (Y3, E)
satisfies E ≥ Ein/2 and (4.1) on (0, T∗) then (4.3) holds. We introduce

X := {E ∈ C([0, T∗]), Ein/2 ≤ E(t) ≤ Ein on (0, T∗)}.

Step 2. Let us consider a function E1 ∈ X and define B2(t, u; dz) :=
B(E1(t), u; dz). From assumptions (1.5)–(1.11)–(1.12)–(1.13 we may write

B2(t, u; dz) = |u| γ2(t) b2(t, u; dz)

where b2 is a probability measure and γ2(t) satisfies

γ2(t) = α(E1(t)) ≤ α0(Ein/2) < +∞ ∀ t ∈ [0, T∗].

Thanks to Theorem 1.2 there exists a unique solution f2 ∈ C([0, T∗]; L1
2) ∩

L∞(0, T∗; L1
3) to the Boltzmann equation (1.1)–(1.2) associated to the collision

rate B2 and we set E2 := E( f2). In such a way we have defined a map � : X → X ,
�(E1) = E2.

In order to apply the Schauder fixed point Theorem, we aim to prove that �

is continuous and compact from X to X . Consider (En
1 ) a sequence of X which

uniformly converges to E1. Since (En
1 ) belongs to the compact set [Ein/2, Ein] for

any n and any t ∈ [0, T∗], we deduce by applying Corollary 2.7 to the sequence
( f n

2 ) associated to Bn
2 (t, u; dz)B(En

1 (t), u; dz) that

∀ n ≥ 0, sup
[0,T∗]

∫
RN

�( f n
2 (t, v)) dv ≤ C2, (4.4)

for a superlinear function � and a constant C2 > 0. Moreover, from Proposition 3.1
we have

∀ n ≥ 0, sup
[0,T∗]

∫
RN

f n
2 (t, v) |v|3 dv ≤ C3 (4.5)

for some constant C3 > 0.
On the one hand, gathering (4.4), (4.5) and using the Dunford-Pettis

Lemma, we obtain that ( f n
2 ) belongs to a weak compact set of L1((0, T∗) × R

3).
Propositon 4.1 then implies that there exists f2 ∈ C([0, T∗]; L1

2) ∩ L∞(0, T∗; L1
3)

such that, up to a subsequence, f n
2 ⇀ f2 weakly in L1(0, T ; L1

2) and f2 is a solu-
tion to the Boltzmann equation associated to B2(t, u; dz) = B(E1(t), u; dz). Since
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this limit is unique by the previous study, the whole sequence ( f n
2 ) converges

weakly to f2, and in particular

En
2 ⇀ E2 weakly in L1(0, T ) (4.6)

where E2 is the kinetic energy of f2.
On the other hand, there holds

d

dt
En

2 = −
∫

RN ×RN

f n
2 f n

2∗ |u|3 �
(
En

1 , u
)

dvdv∗ =: −Dn
2 .

Since �(En
1 , u) ≤ α(En

1 )/4 ≤ α0(Ein/2)/4, we deduce from (3.1) that Dn
2 is

bounded in L∞(0, T ) which in turn implies

‖En
2 ‖W 1,∞(0,T ) ≤ C4. (4.7)

From Ascoli’s Theorem we infer that the sequence (En
2 ) belongs to a compact set

of C([0, T ]). Since the cluster points for the uniform norm are included in the set
of cluster points for the L1(0, T ) weak topology, it then follows from (4.6) that
�(En

1 ) = E( f n
2 ) converges to �(E1) = E( f2) for the uniform norm on C([0, T ]),

which ends the proof of the continuity of �. Of course, the a priori bound (4.7) and
Ascoli’s Theorem also imply that � is a compact map on X . We may thus use the
Schauder fixed point Theorem to conclude to the existence of at least one Ē ∈ X
such that �(Ē) = Ē . Then, the solution f̄ ∈ C([0, T∗]; L1

2) ∩ L∞(0, T∗; L1
3) to the

Boltzmann equation associated to B̄(t, u; dz) := B(Ē(t), u; dz) satisfies∫
RN

f̄ (t, v) |v|2 dv = �(Ē)(t) = Ē(t)

and therefore f̄ is a solution to the Boltzmann equation associated to B in
C([0, T∗]; L1

2) ∩ L∞(0, T∗; L1
3).

Step 3. We then consider the class of solution f : (0, T1) → L1
3 such that f ∈

C([0, T ]; L1
2) ∩ L∞(0, T ; L1

3) for any T ∈ (0, T1), E is decreasing, f is mass
conserving. By Zorn’s Lemma, there exists a maximal interval [0, Tc) such that

(Tc < ∞ and E(t) → 0 when t → Tc) or Tc = +∞.

In order to end the proof, the only thing one has to remark is that if Tc < +∞ and
lim
t↗Tc

E(t) = Ec > 0, then lim
t↗Tc

Y3(t) < ∞ (by (4.1)) so that f ∈ C([0, Tc]; L1
2) ∩

L∞(0, Tc; L1
3) and we may extends the solution f to a larger time interval. �

4.2. Strong Stability and Uniqueness Part of Theorem 1.4

In this subsection we give a quantitative stability result in strong sense,
under the additional assumption of some smoothness on the initial datum and the
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collision rate. Let us first prove a simple result of propagation of the total variation
of the distribution.

Proposition 4.2. Let B be a collision rate satisfying assumptions (3.1)–(3.2)–
(3.3) and 0 ≤ fin ∈ BV4 ∩ L1

5 an initial datum. Then there exists CT∗ , depending
on γ∗ and ‖ fin‖L1

5
, such that any solution f ∈ C([0, T∗], L1

2) ∩ L∞(0, T∗, L1
3) to

the Boltzmann equation constructed in the previous step satisfies

∀ t ∈ [0, T∗], ‖ ft‖BV4 ≤ ‖ fin‖BV4 eCT∗ t .

Proof of Proposition 4.2. The proof is based on the same kind of Povzner inequality
as above. Let us first prove the estimate by a priori approach, for the sake of
clearness. We have the following formula for the differential of Q:

∇v Q( f, f ) = Q(∇v f, f ) + Q( f,∇v f ).

This property is proved in the elastic case in ref. 38 but it is strictly related to the
invariance property of the collision operator

τh Q( f, f ) = Q(τh f, τh f )

where the translation operator τh is defined by

∀ v ∈ R
N , τh f (v) = f (v − h).

It is easily seen that it remains true in the inelastic case under our assumptions.
The propagation of the L1

5 norm has already been established. Then we estimate
the time derivative of the L1

4 norm of the gradient along the flow:

d

dt
‖∇v ft‖L1

4
=

∫
RN ×RN ×D

f (∇v f∗)[(1 + |v′|4) sgn(∇v f )′ + (1 + |v′
∗|4) sgn(∇v f )′∗

− (1 + |v|4) sgn(∇v f ) − (1 + |v∗|4) sgn(∇v f )∗] B dv dv∗

≤
∫

RN ×RN ×D
f |∇v f∗|[(1 + |v′|4) + (1 + |v′

∗|4) − (1 + |v|4)

− (1 + |v∗|4)] B dv dv∗ + 4 γ∗ ‖ ft (1 + |v|5)‖L1 ‖∇v f (1 + |v|)‖L1

≤ C ‖ ft‖L1
5
‖∇v f ‖L1

4

using a Povzner inequality as in (3.4). This shows the a priori propagation of the
BV4 norm by a Gronwall argument.

Now let us explain how to obtain the same estimate by a posteriori approach.
First concerning the a posteriori propagation of the L1

5 norm, it is similar to
the method in ref. 31 and does not lead to any difficulty. Concerning the prop-
agation of BV4 norm, we look at some “discretized derivative.” Let us denote



Cooling Process for Inelastic Boltzmann Equations for Hard Spheres, Part I 687

k = sgn(τh f − f ) (1 + |v|4). We can compute by the chain rule the following
time derivative (using the invariance property of the collision operator)

d

dt
‖τh ft − ft‖L1

4
=

∫
RN ×RN ×D

(τh f τh f∗ − f f∗) [k ′ − k] B dv dv∗

=
∫

RN ×RN ×D
(τh f − f ) f∗ [k ′ + k ′

∗ − k − k∗] B dv dv∗

+1

2

∫
RN ×RN ×D

(τh f − f )(τh f∗ − f∗) [k ′ + k ′
∗ − k − k∗] B dv dv∗

≤
∫

RN ×RN ×D
|τh f − f | f∗ [|v′|4 + |v′

∗|4 − |v|4 + |v∗|4] B dv dv∗

+1

2

∫
RN ×RN ×D

|τh f − f ||τh f∗ − f∗|

× [|v′|4 + |v′
∗|4 + |v|4 + |v∗|4] B dv dv∗.

Then using the same rough Povzner inequality as in the proof of Proposition 3.1,
we have

[|v′|4 + |v′
∗|4 + |v|4 + |v∗|4]|v − v∗| ≤ C [(1 + |v|4)(1 + |v∗|5)

+ (1 + |v∗|4)(1 + |v|5)].

Hence we deduce that

d

dt
‖τh ft − ft‖L1

4
≤ C γ∗ ‖τh ft − ft‖L1

4
[‖ f ‖L1

5
+ ‖τh ft − ft‖L1

5
]

and for |h| ≤ 1, we deduce

d

dt
‖τh ft − ft‖L1

4
≤ C γ∗ ‖τh ft − ft‖L1

4
‖ f ‖L1

5
.

By a Gronwall argument it shows for any |h| ≤ 1 that

∀ t ∈ [0, T∗], ‖τh ft − ft‖L1
4
≤ ‖τh fin − fin‖L1

4
eCT∗ t

for a constant CT∗ depending on γ∗ and supt∈[0,T∗] ‖ ft‖L1
5
. By dividing by h and

letting h goes to 0, we conclude that

∀ t ∈ [0, T∗], ‖∇v ft‖M1
4

≤ ‖∇v fin‖M1
4

eCT∗ t

which ends the proof. �

Assume now that the collision rate satisfies (1.5)–(1.11)–(1.12)–(1.13) plus
the additional assumption H1. Let us take fin ∈ BV4 ∩ L1

5 and let us consider two
solutions f, g ∈ C([0, Tc]; L1

2) ∩ L∞(0, T ; L1
3) constructed by the previous steps.

For these two solutions the function e(E) is locally Lipschitz, so is the function
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�(E) and the differential equation (1.8) satisfied by E( ft ) on [0, T∗] implies that
it is bounded from below on this interval. Thus thanks to the continuity of α, the
assumptions of Proposition 0 are satisfied, and thus the BV4 norm is bounded on
any time interval [0, T∗] ⊂ [0, Tc) .

Proposition 4.3. Let B be a collision rate satisfying (1.5)–(1.11)–(1.12)–(1.13)
plus the additionnal assumption H1. Let f, g ∈ C([0, T∗]; L1

2) ∩ L∞(0, T∗; L1
3) be

two solutions with mass 1 and momentum 0, with initial data fin and gin, and such
that E( f (t, .)), E(g(t, .)) ∈ K on [0, T∗] with K a compact of (0,+∞) and

∀ t ∈ [0, T∗], ‖ f (t, .)‖BV4 , ‖g(t, .)‖BV4 ≤ CT∗ .

Then there is a constant C ′
T∗ depending on B, K and CT∗ such that

∀ t ∈ [0, T∗], ‖ f (t, .) − g(t, .)‖L1
2
≤ ‖ fin − gin‖L1

2
eC ′

T∗ t .

We need the following geometrical lemma which is a more accurate version
of Lemma 2.3 when the collision process is of the generalized visco-elastic type
(1.14,1.15).

Lemma 4.4. For any e ∈ (0, 1] and σ ∈ S
N−1 we define

φ∗
e = φ∗

e,v,σ : R
N → R

N , v∗ → v′ = v + 1 + e

4
�σ (v∗ − v) (4.8)

φe = φe,v∗,σ : R
N → R

N , v → v′ = v∗ + 3 − e

4
�reσ (v − v∗), re = 1 + e

3 − e
,

(4.9)

(where �z was defined in Lemma 2.3) and the Jacobian functions J ∗
e =

det (D φ∗
e,v,σ ), Je = det (D φe,v∗,σ ).

Then for any γ ∈ (−1, 1), φ∗
e defines a C∞-diffeomorphism from v + �γ

onto v + �ω∗(γ ) with ω∗(γ ) = ((1 + γ )/2)1/2 and φe defines a C∞-diffeomorphism
from v∗ + �γ onto v∗ + �ωe(γ ) with ωe(γ ) = (γ + re)/(1 + 2γ re + r2

e )1/2. More-
over, there exists Cγ ∈ (0,∞) such that

C−1
γ |v − v∗| ≤ |φe(v) − v∗| ≤ 2 |v − v∗|, (4.10)

|φ−1
e (v′) − φ−1

e′ (v′)| ≤ Cγ |e′ − e| |v′ − v∗|, (4.11)

|Je| ≤ Cγ , |J−1
e | ≤ Cγ , |J−1

e − J−1
e′ | ≤ Cγ |e′ − e| (4.12)

on v∗ + �γ uniformly with respect to the parameters e, e′ ∈ [0, 1], σ ∈ S
N−1,

v∗ ∈ R
N . The same estimates hold for φ∗

e .
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Finally, for any e, e′ ∈ [0, 1], σ ∈ S
N−1, v∗ ∈ R

N and t ∈ [0, 1] there holds

t φ−1
e + (1 − t) φ−1

e′ = φ−1
e′′ (4.13)

for some e′′ into the segment with extremal points e and e′. The same result holds
for φ∗

e .

Proof of Lemma 4.4. We only establish the result for the function φe, since the
proof for φ∗

e is similar (and even simpler). First, (4.12) and the fact that φe defines a
C∞-diffeomorphism from v∗ + �γ onto v∗ + �ωe(γ ) come straightforwardly from
Lemma 2.3 and its proof.

Second, for any z ∈ D, |�z(u)| = |u + |u|z| ≤ 2 |u| and

|�z(u)|2 ≥ |u|2 + 2 |u| z · u + |u|2 |z|2 ≥ |u|2 (1 − γ 2)

for any u ∈ R
N , û · ẑ ≥ γ . That proves (4.10).

Third, using the notation of Lemma 2.3 we write �−1
r σ (w) = (ϕ−1

w2,r (w1), w2)
for any w = (w1, w2), w1 ∈ R, w2 ∈ R

N , w2 · σ = 0. The map (u1, r ) →
ϕw2,r (u1) is smooth and has positive partial derivatives on R × [0, 1] if w2 �= 0 and
on (0,∞) × [0, 1] if w2 = 0. On the one hand, we deduce that (w1, r ) → ϕ−1

w2,r (w1)
is smooth and increasing in both variables and that the same holds for

(w1, e) → 4

3 − e
ϕ−1

w2,re
(w1).

The intermediate values Theorem then implies that for any e ≤ e′ ∈ [0, 1], t ∈
[0, 1] there holds

t
4

3 − e
ϕ−1

w2,re
(w1) + (1 − t)

4

3 − e′ ϕ−1
w2,re′ (w1) = 4

3 − e′′ ϕ−1
w2,re′′ (w1)

for some e′′ ∈ [e, e′] from which (4.13) follows.
On the other hand, r → �−1

r σ (ŵ) is smooth for any ŵ ∈ S
N−1\{−σ } and

therefore there exists Cγ such that |�−1
r σ (ŵ) − �−1

r σ (ŵ)| ≤ Cγ |r ′ − r | uniformly
for any ŵ ∈ S

N−1, ŵ · σ ≥ γ . Thanks to the homogeneity property �−1
z (λ w) =

λ �−1
z (w) we deduce

|�−1
r σ (w) − �−1

r σ (w)| = |w||�−1
r σ (ŵ) − �−1

r σ (ŵ)| ≤ Cγ |r ′ − r | |w|,
from which (4.11) follows. �

Proof of Proposition 4.3. Let us denote Q f (resp. Qg) the collision operator
with collision rate associated with E = E( f ) (resp. E = E(g)), D := f − g, S :=
f + g and k := (1 + |v|2) sgn(D). The evolution equation on D writes

∂

∂t
D = 1

2
[Q f (D, S) + Q f (S, D)] + [Q f (g, g) − Qg(g, g)]
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and thus the time derivative of the L1
2 norm of D is

d

dt
‖D‖L1

2
= 1

2

∫
RN ×RN ×SN−1

SD∗
[
k
(
v′

e( f )

)
+ k

(
v′

∗,e( f )

)
− k − k∗

]
|u| b̃E( f ) dv dv∗ dσ

+
∫

RN ×RN ×SN−1

gg∗
[
k
(
v′

e(g)

)
− k

]
|u|

[
b̃E( f ) − b̃E(g)

]
dv dv∗ dσ

+
∫

RN ×RN ×SN−1

gg∗
[
k
(
v′

e( f )

)
− k

(
v′

e(g)

)]
|u| b̃+

E( f ) dv dv∗ dσ

+
∫

RN ×RN ×SN−1

gg∗
[
k
(
v′

e( f )

)
− k

(
v′

e(g)

)]
|u| b̃−

E( f ) dv dv∗ dσ

= I1 + I2 + I3 + I4,

the subscripts recalling that the post-collisional velocities v′
e( f ), v′

∗,e( f ) and v′
e(g)

defined by (1.28) depend on the choice of the normal restitution coefficient e and
thus on the kinetic energies E( f ) and E(g). Here we have set b̃E (x) = b̃(E, x) and
b̃±
E (x) = b̃(E, x) 1±x≥0 and for the sake of brevity we just write e(h) instead of

e(E(h)) for any function h ∈ L1
2.

The first term is easily dealt with by the same arguments as in the non-coupled
case:

I1 ≤
∫

RN ×RN ×SN−1

S |D∗| (1 + |v|2) |u| b̃E( f ) dv dv∗ dσ ≤ α(E( f )) ‖S‖L1
3
‖ f − g‖L1

1
.

Using |u| (|k| + |k(v′
e(g))|) ≤ 2 (1 + |v|2)3/2 (1 + |v∗|2)3/2, the second term I2

is controlled by

I2 ≤ 2
∥∥b̃E( f ) − b̃E(g)

∥∥
L1(SN−1)

∥∥g
∥∥2

L1
3
.

Using now the locally Lipschitz assumption (1.16) and the fact thatE( f ), E(g) ∈ K
we get for some constant CK depending on b̃ and K :

I2 ≤ CK |E( f ) − E(g)| ‖g‖2
L1

3
≤ CK ‖ f − g‖L1

2
‖g‖2

L1
3
.

As for the third term I3, we use twice the change of variable v → v′ = φe(v)
with v∗, σ fixed and e = e( f ) or e = e(g). We get

I3 =
∫

RN ×SN−1

∫
Oe( f )

g∗ k ′ G
(
φ−1

e( f )

)
J−1

e( f ) b̃+
E( f ) dv′ dv∗ dσ

−
∫

RN ×SN−1

∫
Oe(g)

g∗ k ′ G
(
φ−1

e(g)

)
J−1

e(g) b̃+
E( f ) dv′ dv∗ dσ,

where we have introduced the notations G(w) := |v∗ − w| g(w) for any w ∈ R
N

and Oe = v∗ + �ωe(0). Without restriction we may assume e( f ) ≤ e(g) and there-
fore Oe(g) ⊂ Oe( f ) since e → ωe(0) is an increasing function. We then split I3
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as

I3 =
∫

RN ×SN−1

∫
Oe( f )\Oe(g)

g∗ k ′ G
(
φ−1

e( f )

)
J−1

e( f ) b̃+
E( f ) dv′ dv∗ dσ

+
∫

RN ×SN−1

∫
Oe(g)

g∗ k ′ [J−1
e( f ) − J−1

e(g)

]
G

(
φ−1

e(g)

)
b̃+
E( f ) dv′ dv∗ dσ

+
∫

RN ×SN−1

∫
Oe(g)

g∗ k ′ [G
(
φ−1

e( f )

) − G
(
φ−1

e(g)

)]
J−1

e( f ) b̃+
E( f ) dv′ dv∗ dσ

= I3,1 + I3,2 + I3,3.

For the first term I3,1 we use the backward change of variables v′ → v = φ−1
e( f )(v

′)
and we get

I3,1 =
∫

RN ×SN−1

∫
RN

g∗ k
(
v′

e( f )

)
G b̃E( f ) 10≤û·σ≤η dv dv∗ dσ

with η := ω−1
e( f ) ◦ ωe(g)(0). By inspection, the functions (e, γ ) ∈ [0, 1] ×

(−1, 1] → ωe(γ ), ω−1
e (γ ) ∈ (−1, 1] are smooth with respect to both variables.

From this smoothness and the fact that ω−1
e ◦ ωe(0) = 0 we deduce |ω−1

e′ ◦ ωe(0)| ≤
C |e − e′| for any e, e′ ∈ [0, 1] and for some constant C ∈ (0,∞). As a conse-
quence, thanks to the Lipschitz assumption (1.17), we obtain

I3,1 ≤ ‖b̃‖L∞

∫
RN ×RN

g (1 + |v|)3 g∗ (1 + |v∗|)3

{∫
SN−1

1−C (e(g)−e( f ))≤û·σ≤0 dσ

}
dv dv∗

≤ C ‖g‖2
L1

3
|e( f ) − e(g)| ≤ C ‖g‖2

L1
3
‖ f − g‖L1

2
.

For the term I3,2, using the estimate (4.12) and the Lipschitz assumption
(1.17), we get ∣∣J−1

e( f ) − J−1
e(g)

∣∣ ≤ C |e( f ) − e(g)| ≤ CK ‖ f − g‖L1
2
.

Then doing the backward change of variable v′ → v = φ−1
e(g)(v

′) and observing
that Je( f ) is bounded on {u, û · σ ≥ 0} thanks to (4.10), we get

I3,2 ≤ CK ‖ f − g‖L1
2
‖g‖2

L1
3
.

We now aim to prove that for any functions f, g which energies E f and
Eg belonging to a compact K ⊂ (0,∞) there exists a constant CK such that the
following functional inequality holds

I3,3 ≤ CK ‖ f − g‖L1
2
‖g‖L1

4
‖g‖BV4 . (4.14)
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Let us first assume that f and g are smooth functions, say f, g ∈ D(RN ). From
(4.11) and (4.13) we have∣∣∣G(

φ−1
e( f )

)
(v′) − G

(
φ−1

e(g)(v
′)
)∣∣∣

≤ ∣∣φ−1
e( f )(v

′) − φ−1
e(g)(v

′)
∣∣ ∫ 1

0

∣∣∣∇wG((1 − t)φ−1
e( f )(v

′) + tφ−1
e(g)(v

′))
∣∣∣ dt

≤ C |e( f ) − e(g)| |v′ − v|
∫ 1

0

∣∣∣∇wG(φ−1
et

(v′))
∣∣∣ dt

with et ∈ [e( f ), e(g)]. Since then Oe(g) ⊂ Oet for any t ∈ [0, 1], we deduce

I3,3 ≤ C |e( f ) − e(g)|ÛçÙõ
∫ 1

0

∫
RN ×SN−1

∫
Oet

g∗ |k ′| |v′ − v|
∣∣∣∇wG(φ−1

et
(v′))

∣∣∣ dv′ dv dσdt.

Using finally the backward change of variable v′ → v = φ−1
et

(v′) and the uniform
bound (4.12) on the Jacobian Jet on v∗ + �0 we get

I3,3 ≤ C |e( f ) − e(g)| ‖g‖L1
4
‖g‖BV4 .

Therefore we obtain (4.14) for smooth functions. When f, g ∈ BV4 we argue
by density, introducing two sequences of smooth functions ( fn) and (gn) which
converge respectively to f and g in L1 and are bounded in BV4, we pass to the
limit n → ∞ in the functionnal inequality (4.14) written for the functions fn and
gn . We then easily conclude that (4.14) also holds for f and g.

The term I4 can be dealt with similarly to the term I3. Collecting all the
estimates we thus get

d

dt
‖ ft − gt‖L1

2
≤ C ′

T∗ ‖ ft − gt‖L1
2

where C ′
T∗ depends on K , b̃ and on some uniform bounds on ‖ f ‖L1

3
and ‖g‖BV4 .

This concludes the proof by a Gronwall argument. �

The uniqueness part of Theorem 1.4 follows straightforwardly from
Proposition 4.3 and the discussion made just before its statement.

5. STUDY OF THE COOLING PROCESS

In this section we prove the cooling asymptotic as stated in point (ii) of
Theorem 1.2 and points (iii), (iv), (v) of Theorem 1.4. We first prove the collapse
of the distribution function in the sense of weak * convergence to the Dirac mass
in the set of measures.
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Proposition 5.1. Let Tc ∈ (0,+∞] be the time of life of the solution. Under the
sole additional assumption H2, there holds

f (t, .) ⇀
t→Tc

δv=0 weakly ∗ in M1(RN ). (5.1)

Proof of Proposition 5.1. We split the proof in two steps.

Step 1. Assume first that E → 0 when t → Tc. This is always the case when
Tc < +∞ (since the convergence to 0 of the kinetic energy follows from the
existence proof in this case) and it will be established under additional assumptions
on B when Tc = +∞ but it probably holds true under the sole assumption H2 in
this case as well. For any 0 ≤ ϕ ∈ D(RN \{0}), there exists r > 0 such that ϕ = 0
on D(0, r ) and then, there exists Cϕ = Cϕ(r, ‖ϕ‖∞) such that |ϕ(v)| ≤ Cϕ |v|2.
As a consequence, ∫

RN

f ϕ dv ≤ Cϕ E(t) → 0,

from which we deduce that any weak * limit µ̄ of f in M1 satisfies supp µ̄ ⊂ {0}.
Therefore, (5.1) follows using the conservations (1.32) and the energy bound
(1.33).

Step 2. Assume next that E → E∞ > 0 (and thus also Tc = +∞). Then for a fixed
time T > 0 and for any non-negative sequence (tn) increasing and going to +∞,
there exists a subsequence (tnk ) and a measure µ̄ ∈ L∞(0, T ; M1

2 ) such that the
sequence fk(t, v) := f (tnk + t, v) satisfies

fk ⇀ µ̄ weakly ∗ in L∞(0, T ; M1). (5.2)

Moreover, for any ϕ ∈ Cc(RN ), there holds

d

dt

∫
RN

fk ϕ dv = 〈Q( fk, fk), ϕ〉 on (0, T ),

with 〈Q( fk, fk), ϕ〉 bounded in L∞(0, T ). From Ascoli’s Theorem, we get∫
RN

fk ϕ dv →
∫

RN

ϕ dµ̄(v) uniformly on [0, T ].

As a consequence, for any given function χε ∈ Cc(R3 × R
3) such that 0 ≤ χε ≤ 1

and χε(v, v∗) = 1 for every (v, v∗) such that |v| ≤ ε−1 and |v∗| ≤ ε−1 we may
pass to the limit (using the continuity of � = �(E, u) which is uniform on the
compact set determined by [E∞, E0] and the support of χε)∫ T

0
Dε( fk) dt −→

k→+∞

∫ T

0

∫
RN ×RN

|u|3�(E∞, u) χε(v, v∗) dµ̄ dµ̄∗ dt, (5.3)
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where we have defined for any measure (or function) λ:

Dε(λ) :=
∫

RN ×RN

|u|3 �(E, u) χε(v, v∗) dλ(v) dλ(v∗).

From the dissipation of energy (1.8) and the estimate from below (1.19), there
holds

d

dt
E(t) ≤ −D( f ) with D( f ) :=

∫
RN ×RN

|u|3 �(E, u) f f∗ dv dv∗,

which in turn implies that t → D( f (t, .)) ∈ L1(0,∞), and then∫ T

0
Dε( fk) dt ≤

∫ T

0
D( fk) dt =

∫ tnk +T

tnk

D( f ) dt −→
k→∞

0. (5.4)

Gathering (5.3) and (5.4), and letting ε goes to 0, we deduce that∫
RN ×RN

|u|3�(E∞, u) dµ̄ dµ̄∗ = 0 on (0, T ).

The positivity (1.18) of �(E∞, u) then implies that µ̄ = c̄ δv=w̄ for some measur-
able functions w̄ : (0, T ) → R

N and c̄ : (0, T ) → R+. Moreover, from the conser-
vation of mass and momentum (1.32) and the bound of energy (1.33) we deduce
that c̄ = 1 and w̄ = 0 a.e. It is then classical to deduce (by the uniqueness of the
limit and the fact that it is independent on time) that (5.1) holds. �

To conclude that this weak convergence of the distribution to the Dirac mass
as time goes to infinity implies the convergence of the kinetic energy to 0 (i.e.,
the kinetic energy of the Dirac mass) we have to show that no kinetic energy is
escaping at infinify as t → Tc. To this purpose we put stronger assumptions on
the collision rate. The first additional assumption H3 roughly speaking means that
the energy dissipation functional is strong enough to forbid it, whereas the second
additional assumption H4 allows to use the uniform propagation of moments of
order strictly greater than 2 to forbid it.

Proposition 5.2. Let Tc ∈ (0,+∞] be the time of life of the solution. Then if
either Tc < +∞, or Tc = +∞ and B satisfies additional assumptions H2–H3 or
H2–H4, we have

E(t) → 0 when t → Tc. (5.5)

Proof of Proposition 5.2. We split the proof in three steps.

Step 1. Assume first Tc < +∞. The claim follows from the existence proof.

Step 2. Assume now Tc = +∞ and that B satisfies assumption H3: (1.19)–(1.20).
We argue by contradiction: assume that E(t) �→ 0, that is, there exists E∞ > 0



Cooling Process for Inelastic Boltzmann Equations for Hard Spheres, Part I 695

such that E(t) ∈ (E∞, Ein). Reasoning as in Proposition 5.1, we get, for a fixed
time T > 0 and for any sequence (tn) increasing and going to infinity, that there
exists a subsequence (tnk ) and a measure µ̄ ∈ L∞(0, T ; M1

2 ) such that the function
fk(t, v) := f (tnk + t, v) satisfies (5.2) and∫ T

0
D0

ε ( fk) dt →
∫ T

0
D0

ε (µ̄) dt, (5.6)

where we have defined for any measure (or function) λ:

D0
ε (λ) :=

∫
RN ×RN

|u|3 ψ(|u|) χε(v, v∗) dλ(v) dλ(v∗).

From the dissipation of energy (1.8) and the estimate from below (1.19), there
holds

d

dt
E(t) ≤ −D0( f ) with D0( f ) :=

∫
RN ×RN

|u|3 ψ(|u|) f f∗ dv dv∗, (5.7)

which in turn implies that t → D0( f (t, .)) ∈ L1(0,∞), and then∫ T

0
D0

ε ( fk) dt ≤
∫ T

0
D0( fk) dt =

∫ tnk +T

tnk

D0( f ) dt −→
k→∞

0. (5.8)

Gathering (5.6) and (5.8), and letting ε goes to 0, we deduce that D0(µ̄) = 0 on
(0, T ). The positivity of ψ implies as in Proposition 5.1 that supp µ̄ ⊂ {0} and
µ̄δv=0. As this limit is unique and independent on time we deduce that (5.1) holds.

Now, on the one hand, taking R = √
E∞/2 there holds∫

Bc
R

f |v|2 dv =
∫

RN

f |v|2 dv −
∫

BR

f |v|2 dv ≥ E∞ − R2 ≥ E∞/2 (5.9)

for any t ≥ 0. On the other hand, for T large enough, there holds thanks to (5.1)∫
BR/2

f dv ≥ 1

2
for any t ≥ T . (5.10)

Remarking that on BR/2 × Bc
R there holds, thanks to (1.20),

|u|3 ψ(|u|) ≥ |v∗|3
8

ψ

( |v∗|
2

)
≥ ψR

|v∗|2
4

, (5.11)

we may put together (5.7)–(5.11) and we get thanks to (5.9) and (5.10)

d

dt
E(t) ≤ −

∫
BR/2

∫
Bc

R

|v − v∗|3 ψ(|v − v∗|) f f∗ dvdv∗

≤ −ψR

4

∫
BR/2

f dv

∫
Bc

R

f∗ |v∗|2 dv∗ ≤ −ψR

4

1

2

E∞
2
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for any t ≥ T . This implies that E becomes negative in finite time and we get a
contradiction.

Step 3. Finally, assume that Tc = +∞ and B satisfies assumption H4. On the one
hand, thanks to (3.6), there holds

sup
[0,∞)

∫
RN

f (t, v) |v|3 dv < ∞.

On the other hand, arguing as in Step 2, we obtain (keeping the same notations)
that (5.2) and then (from the uniform bound in L1

3)

E( fk) → Ē = E(µ̄) and D(µ̄) = 0.

The dissipation of energy vanishing implies that

|u|3 µ̄ µ̄∗ ≡ 0 or �(Ē, u) is not positive on (0, T ) × R
2N .

In the first case we deduce that µ̄ = δv=0 as in Step 2 and then Ē = E(δv=0) = 0.
In the second case we deduce, from (1.18), that Ē is not positive. In both case,
there exists τk such that τk → ∞ and E(τk) → 0 and therefore (5.2) holds since E
is decreasing. �

Now we turn to some criterions for the cooling process to occur or not in
finite time.

Proposition 5.3. Assume that α is bounded near E = 0, and jE converges to 0
as ε → 0 uniformly near E = 0, then Tc = +∞.

Proof of Proposition 5.3. It is enough to remark that, thanks to the hypothesis
made on α and jE , the a priori bound in Orlicz norm that one deduces from (2.13)
as in Corollary 2.7 extends to all times:

∀ t ≥ 0 ‖ ft‖L� ≤ ‖ fin‖L� exp(C ‖ fin‖L1
2

t)

for some constant C depending on the collision rate. It shows that the energy
cannot vanish in finite time. �

Proposition 5.4. Assume that B satisfies H4, that for some increasing and
positive function �0 there holds �(E, u) ≤ �0(E) for any u ∈ R

N , E ≥ 0, and
that fin er |v|η ∈ L1 for some r > 0 and η ∈ (1, 2], then Tc = +∞.
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Proof of Proposition 5.4. From the dissipation of energy (1.8), the bound on �

and the decay of the energy (1.33), we have

dE
dt

≥ −�0(Ein)
∫

RN

∫
RN

f f∗ |u|3 dvdv∗ =: −�0(Ein) (I1,R + I2,R)

where 


I1,R :=
∫

RN ×RN

|u|3 1{|u|≤R} f f∗ dv dv∗,

I2,R :=
∫

RN ×RN

|u|3 1{|u|≥R} f f∗ dv dv∗.

On the one hand, for any R > 0, we have using (1.32)

I1,R ≤ R

∫
RN ×RN

|u|2 f f∗ dv dv∗ = 2 R E .

On the other hand, we infer from Proposition 3.2 (since B satisfies H4) that

sup
t∈[0,Tc)

∫
RN

f (t, v) e2 r ′ |v|η dv ≤ C1

for some r ′, C1 ∈ (0,∞). Therefore

I2,R ≤
∫

RN ×RN

(4 |v|3 + 4 |v∗|3) 2 1{|v|>R/2} f f∗ dv dv∗

≤ 8 e−r ′ Rη

∫
RN

(1 + |v|3) er ′ |v|η f dv

∫
RN

(1 + |v∗|3) f∗ dv∗ ≤ C2 e−r ′ Rη

.

Gathering these three estimates, we deduce

d

dt
E ≥ −C3 R E − C3 e−r ′ Rη

,

which in turns implies, thanks to a Gronwall argument,

∀ R > 0, inf
t∈[0,T ]

E(t) ≥ Ein e−C3 R T − e−r ′ Rη

R
.

We conclude that E(t) > 0 for any t ∈ [0, T ] and any fixed T > 0, choosing R
large enough (using that η > 1). �

Proposition 5.5. Assume �(E, u) ≥ �0 Eδ with �0 > 0 and δ < −1/2, then
Tc < +∞.
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Proof of Proposition 5.5. On the one hand, from the dissipation of energy (1.8)
and the bound on �, we have

dE
dt

≤ −�0 Eδ

∫
RN

∫
RN

f f∗ |u|3 dv dv∗.

On the other hand, from Jensen’s inequality and the conservation of mass and
momentum, there holds∫

RN

∫
RN

f f∗ |u|3 dvdv∗ ≥
(∫

RN

∫
RN

f f∗ |u|2 dvdv∗

)3/2

= (2 E)3/2.

Gathering these two estimates, we get

d

dt
E ≤ −�0 Eδ+3/2

and E vanishes in finite time. �

APPENDIX: SOME FACTS ABOUT ORLICZ SPACES

The goal of this appendix is to gather some results about Orlicz spaces in
order to make this paper as self-contained as possible. The definition and Hölder’s
inequality are recalls of results which can be found in ref. 35 for instance. We
also state and prove a simple formula for the differential of Orlicz norms, which
is most probably not new, but for which we were not able to find a reference.

Definition

We recall here the definition of Orlicz spaces on R
N according to the Lebesgue

measure. Let � : R+ → R+ be a function C2 strictly increasing, convex, such that

�(0) = �′(0) = 0, (A.1)

∀ t ≥ 0, �(2 t) ≤ c� �(t), (A.2)

for some constant c� > 0, and which is superlinear, in the sense that

�(t)

t
−→

t→+∞ +∞. (A.3)

We define L� the set of measurable functions f : R
N → R such that∫

RN

�
(| f (v)|) dv < +∞.

Then L� is a Banach space for the norm

‖ f ‖L� = inf

{
λ > 0 |

∫
RN

�

( | f (v)|
λ

)
dv ≤ 1

}
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and it is called the Orlicz space associated with �. The proof of this last point
can be found in ref. (35, Chapter III, Theorem 3). Note that the usual Lebesgue
spaces L p for 1 ≤ p < +∞ are recovered as particular cases of this definition for
�(t) = t p/p.

Let us mention that for any f ∈ L1(RN ), a refined version of the De la Vallée-
Poussin Theorem [35, Proposition I.1.1] (see also ref. 23, 24) guarantees that there
exists a function � satisfying all the properties above and such that∫

RN

�(| f (v)|) dv < +∞.

Hölder’s Inequality in Orlicz Spaces

Let � be a function C2 strictly increasing, convex satisfying the assump-
tions (A.1), (A.2) and (A.3), and �∗ its complementary Young function, given
(when � is C1) by

∀ y ≥ 0, �∗(y) = y(�′)−1(y) − �((�′)−1(y)).

It is straightforward to check that �∗ satisfies the same assumptions as �. Recall
Young’s inequality

∀ x, y ≥ 0, xy ≤ �(x) + �∗(y). (A.4)

Then one can define the following norm on the Orlicz space L�∗
:

N�∗
( f ) = sup

{∫
RN

| f g| dv ;
∫

RN

�(|g|) dv ≤ 1

}
.

One can extract from [35, Chapter III, Section 3.4, Propositions 6 and 9] the
following result

Theorem A.1. (i) We have the following Hölder’s inequality for any f ∈ L�,
g ∈ L�∗

: ∫
RN

| f g| dv ≤ ‖ f ‖L� N�∗
(g). (A.5)

(ii) There is equality in (A.5) if and only if there is a constant 0 < k∗ < +∞ such
that ( | f |

‖ f ‖L�

)(
k∗|g|

N�∗ (g)

)
= �

( | f |
‖ f ‖L�

)
+ �∗

(
k∗|g|

N�∗ (g)

)
(A.6)

for almost every v ∈ R
N .
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Differential of Orlicz norms

In order to propagate bounds on Orlicz norms along the flow of the Boltzmann
equation, we shall need a formula for the time derivative of the Orlicz norm.

Theorem A.2. Let � be a function C2 strictly increasing, convex satisfying (A.1),
(A.2), (A.3), and let 0 ≤ f ∈ C1([0, T ], L�) such that f (t, ·) �≡ 0 for all t ∈ [0, T ].
Then we have

d

dt
‖ ft‖L� =

[
N�∗

(
�′

( | f |
‖ f ‖L�

))]−1 ∫
RN

∂t f �′
( | f |

‖ f ‖L�

)
dv. (A.7)

Proof of Theorem A.2. From [35, Chapter III, Proposition 6]), our assumptions on
� imply that ∫

RN

�

( | f |
‖ f ‖L�

)
dv = 1 (A.8)

for all 0 �= f ∈ L�. By differentiating this quantity along t we deduce:

0 =
∫

RN

∂t f �′
( | f |

‖ f ‖L�

)
dv − 1

‖ ft‖L�

d

dt
‖ ft‖L�

∫
RN

f �′
( | f |

‖ f ‖L�

)
dv.

Now using the case of equality in Hölder’s inequality (A.5) we have∫
RN

f �′
( | f |

‖ f ‖L�

)
dv = ‖ f ‖L� N�∗

(
�′

( | f |
‖ f ‖L�

))

since the equality (A.6) is trivially satisfied with

g = �′
( | f |

‖ f ‖L�

)

and k∗ = N�∗
(g), using that

xy = �(x) + �∗(y)

as soon as y = �′(x). This concludes the proof. �
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